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How many integer points?

Let C be non-singular cubic with integer coefficients given by

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0 (1)

Natural Number theoretic problem is to describe all solutions (x, y) to
cubic equation with x, y ∈ Z.

If curve given by Weierstrass equation y2 = x3 + ax2 + bx + c then
Nagell-Lutz theorem tells that points of finite order have integer
coordinates.

Converse? y2 = x3 + 3 have integer point P=(1, 2) and
2P=(−2316 ,

11
16). So P is not finite order point.
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How many integer points to expect?

If rank of C is 0 then by Nagell-Lutz theorem all rational
points(finitely many) on C are integer points.

Suppose C is of rank 1 having trivial torsion. Let P be generator of
C (Q) then any point in C (Q) is of form nP, for some n∈ Z. If
nP = (xn, yn) then for n≥3,

xn =

(
yn−1 − y1
xn−1 − x1

)2

− a− xn−1 − x1 (2)

Siegel’s Theorem(1929)

A smooth affine algebraic curve C of genus g defined over a number field
K, there are only finitely many points on C with coordinates in the ring of
integers O of K, provided g > 0.

Ajay Prajapati Elliptic curves 7 December 2020 3 / 25



How many integer points to expect?

If rank of C is 0 then by Nagell-Lutz theorem all rational
points(finitely many) on C are integer points.

Suppose C is of rank 1 having trivial torsion. Let P be generator of
C (Q) then any point in C (Q) is of form nP, for some n∈ Z. If
nP = (xn, yn) then for n≥3,

xn =

(
yn−1 − y1
xn−1 − x1

)2

− a− xn−1 − x1 (2)

Siegel’s Theorem(1929)

A smooth affine algebraic curve C of genus g defined over a number field
K, there are only finitely many points on C with coordinates in the ring of
integers O of K, provided g > 0.

Ajay Prajapati Elliptic curves 7 December 2020 3 / 25



Taxicabs and sum of two cubes

Famous story? 1729 is the smallest number expressible as a sum of
two cubes in two different ways: 1729 = 93 + 103 = 13 + 123.

Means cubic curve x3 + y3 = 1729 has two integer points upto
ordering of x and y, How to prove? Factorize x3 + y3.

Taxicab Equation: x3 + y3 = m. Bound on solutions?

Theorem

Let m ≥ 1 be an integer. Then every solution to the equation
x3 + y3 = m in integers x, y ∈ Z satisfies max{|x |, |y |} ≤

√
2m/3.

Theorem

For every N ≥ 1, there is an integer m ≥ 1 such that the cubic curve
x3 + y3 = m has at least N points with integer coordinates.
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Taxicabs and sum of two cubes

Ramanujan’s observation was also that 1729 is the smallest m with
two positive solutions. Based on this, people have defined Nth
taxicab number: Taxi(N)=min{m ≥ 1: x3 + y3 = m has atleast N
solutions with x ≥ y ≥ 1}.

Taxi(1)=2
Taxi(2)=1729
Taxi(3)=87539319
Taxi(4)=6963472309248
Taxi(5)=48988659276962496
Taxi(6)= 24153319581254312065344

Till now only 6 taxicab numbers are known. Although upper bounds
on next 6 taxicab numbers have been obtained.
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Relationship between number of integer point and rank of
group of rational points

There is an interesting relationship between the number of integer
points and the rank of the group of rational points.

Serge Lang made a general conjecture that has been proven for
certain types of cubic curves, including the taxicab curves studied in
this section.

Theorem(Silverman)

There is a constant K > 1 with the following property. For every integer
m ≥ 1, the number of relatively prime integer points on the cubic curve

Cm : x3 + y3 = m (3)

is bounded by the rank of Cm via the estimate

#{(x , y) ∈ Cm(Q) : x , y ∈ Z, gcd(x , y) = 1} ≤ K 1+rank(Cm(Q)) (4)
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Diophantine Approximation

Diophantine Approximation

This is a branch of mathematics which deals with approximating real
numbers with rational numbers.

1 The first problem was how ”well” a real number can be approximated
by a rational number. This was solved in 18th century by using
continued fractions.

π = 3 +
1

7 +
1

15 +
1

1 +
1

...

(5)

2 The first few convergents are 3, 22/7, 333/106, 355/113.
3 Now the main problem is to find sharp upper bound on above

approximation. The first result is due to Liouville who used it to prove
existence of transcendental numbers by giving an explicit example.
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Thue’s Theorem

Thue’s Theorem(1909)(Special case)

Let b be a positive integer that is not a perfect cube, and let β = 3
√
b Let

C be any fixed positive constant. Then there are only finitely many pairs
of integers (p, q) with q >0 that satisfy the inequality∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3
(6)

1 The above theorem is special case of more general theorem. The
proof is complicated like proof of Mordell’s Theorem. So I am going
to give only outline and main results that are required in proof.

Corollary

Let a, b, c be non-zero integers. Then the equation ax3 + by3= c has only
finitely many solutions in integers x, y.

Ajay Prajapati Elliptic curves 7 December 2020 8 / 25



Thue’s Theorem

Thue’s Theorem(1909)(Special case)

Let b be a positive integer that is not a perfect cube, and let β = 3
√
b Let

C be any fixed positive constant. Then there are only finitely many pairs
of integers (p, q) with q >0 that satisfy the inequality∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3
(6)

1 The above theorem is special case of more general theorem. The
proof is complicated like proof of Mordell’s Theorem. So I am going
to give only outline and main results that are required in proof.

Corollary

Let a, b, c be non-zero integers. Then the equation ax3 + by3= c has only
finitely many solutions in integers x, y.

Ajay Prajapati Elliptic curves 7 December 2020 8 / 25



Thue’s Theorem

Thue’s Theorem(1909)(Special case)

Let b be a positive integer that is not a perfect cube, and let β = 3
√
b Let

C be any fixed positive constant. Then there are only finitely many pairs
of integers (p, q) with q >0 that satisfy the inequality∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3
(6)

1 The above theorem is special case of more general theorem. The
proof is complicated like proof of Mordell’s Theorem. So I am going
to give only outline and main results that are required in proof.

Corollary

Let a, b, c be non-zero integers. Then the equation ax3 + by3= c has only
finitely many solutions in integers x, y.

Ajay Prajapati Elliptic curves 7 December 2020 8 / 25



Frame Title

Proof of corollary

1 It is sufficient to prove corollary for the equation x3 − by3 = c with
b, c ∈ Z, b > 0, c > 0.

2 Let β = 3
√
b. Then x3 − by3 = (x − βy)(x2 + βxy + β2y2). Now

x2 + βxy + β2y2 ≥ 3/4β2.

3 Hence we get, ∣∣∣∣xy − β
∣∣∣∣ ≤ 4|c |

3β2
.

1

|y |3
(7)

4 Then Thue’s Theorem says there are only finitely many (x, y) with
y > 0. To deal with y < 0 rewrite the equation as following and
again apply Thue’s Theorem.∣∣∣∣−x−y − β

∣∣∣∣ ≤ 4|c |
3β2

.
1

|y |3
(8)
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Possible proof of Diophantine equation

1 It can be proved that ∃ a constant C ′ s.t. for every rational number
p/q, ∣∣∣∣pq − β

∣∣∣∣ ≥ 1

C ′q3
(9)

2 Recall we were trying to prove that for every constant C, there are
only finitely many rationals p/q satisfying the inequality∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3
(10)

3 Suppose we could prove stronger version of (1) with exponent < 3.∣∣∣∣pq − β
∣∣∣∣ ≥ 1

C ′q2.9
(11)

4 Then combining (8) and (9), we get q ≤ (CC ′)10 and we are done.
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Possible proof of Diophantine equation

1 How to improve (7)? Let’s summarize how we proved it.
1 Took polynomial f (X ) = X 3 − b ∈ Z[X] which has β as a root.
2 Noted |f (p/q)| ≥ 1/q3. Factoring f(X) we saw that |f (p/q)| is
|p/q − β| times something bounded hence we get (7).

2 One way to improve (7) might be to use some other polynomial
f (X ) ∈ Z[X ] instead of X 3 − b.

1 Suppose we are able to find f (X ) ∈ Z[X] which is divisible by
(X 3 − b)n for some n.

2 Then f(X) factors as

f (X ) = (X − β)ng(X ) with g(X ) ∈ R[X ] (12)

3 As before, we can show that

|F (p/q)| ≤ C ′′|p/q − β|n (13)
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continued

1 Proof continued...
1 Since F(p/q) 6= 0, this implies

|F (p/q)| ≥ 1/qd where d = deg(f ) (14)

2 Comparing upper and lower bounds and taking nth roots, we get∣∣∣∣pq − β
∣∣∣∣ ≥ 1

C ′′ .
1

qd/n
(15)

3 If d < 3n we are done. But d ≥ 3n because (X 3 − b)n|f (X ). So using
this method, we achieve nothing.

2 Thue’s brilliant idea which enabled him to prove (8) is to use a two
variable polynomial F (X ,Y ) ∈ Z[X ,Y ]. He chose the polynomial
that vanishes to high order of (β, β) and then compared the upper
and lower bound of for the value |F (p1/q1, p2/q2)| where p1/q1 and
p2/q2 are solutions of (7).

3 Thue’s theorem proof naturally breaks into three parts of which we
give outline.
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Outline of proof

Construction of auxiliary polynomial

We construct F (X ,Y ) ∈ Z[X ,Y ] with reasonably small coefficients that
vanishes to high order of (β, β).

The auxilary polynomial is small
1 We assume that there are infinitely many pairs of integers (p, q) that

satisfy the inequality (8).

2 Under this assumption, we can find a rational p1/q1 satisfying (8) and
with q1 quite large. Then we can find a second rational number p2/q2
satisfying (8) with q2 much larger than q1.

3 We consider the value of the polynomial F(X, Y ) at the point
(p1/q1, p2/q2). Since F(X, Y) vanishes to high order at (β, β) and
since (8) says that each pi/qi is close to β, gives F (p1/q1, p2/q2)
very small.
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Outline of Proof

The Auxilary polynomial does not vanish
1 This is the subtlest part of the proof. We want to show that

F (p1/q1, p2/q2) is not zero. Hence,∣∣∣∣F (p1
q1
,
p2
q2

)∣∣∣∣ ≥ 1

qd1 q
e
2

(16)

2 Hope that this lower bound contradicts the upper bound in step 2.

3 Unfortunately, we will not be able to show that F (p1/q1, p2/q2) 6= 0.

4 Instead we show that some derivative of F does not vanish at
(p1/q1, p2/q2). This means in step 2, we need to give upper bound
on the values of the derivatives of F.
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4 Instead we show that some derivative of F does not vanish at
(p1/q1, p2/q2). This means in step 2, we need to give upper bound
on the values of the derivatives of F.
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Construction of auxilary polynomial

We will build F is by solving a system of linear equations with integer
coefficients. Siegel was first person to study integer solution of linear
system with integer coefficients.

Siegel’s Lemma(1929)

Let N > M be +ve integers and let

a11T1 + .......+ a1NTN = 0
.. .... ... =0

aM1T1 + .......+ aMNTN = 0

be a system of linear equations with integer coefficients. Then there is a
non-trivial solution T = (t1, ....tN) satisfying

max1≤i≤N |ti | < 2(4Nmaxi .j |aij |)
N

N−M (17)
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Construction of auxilary polynomial

Auxiliary Polynomial Theorem

Let b ∈ Z and β = 3
√
b and let m, n ∈ Z s.t. m ≥ 3 and m =

⌊
2
3n
⌋
. Then

there is a non-zero polynomial

F (X ,Y ) = P(X ) + YQ(X ) =
m+n∑
i=0

(ui + viY )X i (18)

of degree atmost m+n and having the following properties:

F k(β, β) = 0 for all 0 ≤ k < n

max0≤i≤m+n{|ui |, |vi |} ≤ 2(16b)9(m+n)
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Auxilary polynomial is small

Smallness Theorem

Let F (X, Y) be a polynomial as described in previous theorem. Then
there is a constant c1 > 0, depending only on b, so that for any x, y ∈ R
with |x − β| ≤ 1 and for any integer 0 ≤ t ≤ n, we have

|F (t)(x , y)| ≤ cn1 (|x − β|n−t + |y − β|) (19)
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Auxilary polynomial does not vanish

Now, we want that if x and y are rational numbers, then F(x, y) is not
zero. Unfortunately, it is not possible to prove such a strong result.
Instead, it is shown that some derivative F (t)(X ,Y ), with t not too large,
does not vanish.

Non-vanishing theorem

Let F(X, Y ) be an auxiliary polynomial as above. Let p1/q1, p2/q2 ∈ Q in
lowest terms. Then there is a constant c2, depending only on b, and an
integer t satisfying

0 ≤ t ≤ 1 +
c2n

logq1
(20)

so that

F (t)

(
p1
q1
,
p2
q2

)
6= 0 (21)
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Main result

Diophantine Approximation Theorem

Let b be a positive integer that is not a perfect cube, and let β = 3
√
b Let

C be any fixed positive constant. Then there are only finitely many pairs
of integers (p, q) with q >0 that satisfy the inequality∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3
(22)

Proof
1 Assume above inequality has infinitely many solutions.

2 We can find a solution (p1, q1) s.t. q1 > e9c2 and q1 > (2c1C )18

3 We can find a solution (p2, q2) satisfying q2 > q651 .

4 Let n be the integer satisfying n =
⌊
9
8 .

logq2
logq1

⌋
. Exponentiating this

becomes, q
8
9
n

1 ≤ q2 < q
8
9
(n+1

1 .
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Proof

Proof

1 Clearly, n > 9
8 .65− 1 > 72.

2 Use Auxilary Polynomial Theorem and above value of n to find
polynomial F(X, Y). Use non-vanishing theorem to find integer t s.t.

0 ≤ t ≤ 1 + c2n
logq1

< 1 + 1
9n and F (t)

(
p1
q1
, p2q2

)
6= 0.

3 This means that
∣∣∣F (t)

(
p1
q1
, p2q2

)∣∣∣ ≥ 1
qm+n
1 q2

≥ 1

q
23n/9+8/9
1

.

4 To find upper bound, we use Smallness theorem,∣∣∣∣F (t)

(
p1
q1
,
p2
q2

)∣∣∣∣ ≤ cn1

(∣∣∣∣p1q1 − β
∣∣∣∣n−t +

∣∣∣∣p2q2 − β
∣∣∣∣
)

≤ 1

q
47
18
n−3

1

(23)
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Proof

1 Combining the above 2, we get

1

q
23n/9+8/9
1

≤
∣∣∣∣F (t)

(
p1
q1
,
p2
q2

)∣∣∣∣ ≤ 1

q
47n/18−3
1

(24)

2 This means q
1
18
n− 35

9
1 ≤ 1.

3 As n ≥ 72 was chosen, this means q
1
9
1 ≤ 1. This is absurd because

integer q1 is certainly ≥ 2. This completes the proof.
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Results in Diophantine approximation

Thue’s Theorem (1909)

Let β ∈ R be the root of an irreducible polynomial f [X ] ∈ Q[X ] with d =
deg(f) ≥ 3. Let ε > 0 and C >0 be positive numbers. Then there are only
finitely many pairs of integers (p, q) with q >0 that satisfy the inequality∣∣∣∣pq − β

∣∣∣∣ ≤ C

q1+d/2+ε
(25)

1 A number of mathematicians have strengthened the Thue’s result.

2 We might ask for what value of τ(d) is it true that there are only
finitely many rational numbers satisfying∣∣∣∣pq − β

∣∣∣∣ ≤ C

qτ(d)+ε
(26)
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Results in Diophantine approximation

1 The following traces the history of the problem:

Liouville (1851) τ(d) = d
Thue (1909) τ(d) = 1 + d/2
Siegel (1921) τ(d) = 2

√
d

Gelfond, Dyson (1947) τ(d) =
√

2d
Roth (1955) τ(d) = 2

2 Roth theorem is somewhat surprising, says for every degree d, we can
take τ(d) = 2. It is the strongest theorem of this form because any
τ(d) < 2 would not work. Roth won Field’s medal in 1958 for this
work.

3 There are higher dimensional generalisation (both proven and
conjectural) due to Schmidt, Vojta and Faltings.
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1 The proof that we gave for our special case of Thue’s theorem
contains all of the ingredients that appear in general.

2 One constructs an auxiliary polynomial, evaluates it at some rational
numbers, shows that it (or a small derivative) does not vanish, and
derives a contradiction by giving upper and lower bounds for its
magnitude.

3 Siegel, Gelfond, and Dyson obtain their stronger results by using a
general polynomial F(X, Y), rather than a polynomial of the form
P(X)+YQ(X) as used by Thue.

4 The proof of Siegel theorem can be found in book: Arithmetic on
Elliptic curves by Silverman. There he proves the theorem for
general number fields (not only for rationals) and for general absolute
value (not just for usual absolute value).

5 Roth improves this by using an auxiliary polynomial F (X1, ...,Xr ) of
many variables.
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