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§1 Preliminaries 1

§1. Preliminaries

Here we give the proof of important facts which are used in the proof of results
of next section.

Theorem 1.1. [Ex II.2.18(c)] Let X=Spec A, Y=Spec B, ϕ : A −→ B be a ring
homomorphism and f : Y −→ X be the induced morphism of schemes. If ϕ is
surjective then f is a closed immersion.

Proof. f is continuous because f−1(D(a)) = D(ϕ(a)). f is injective because
prime ideals of B are in one to one correspondence with the prime ideals of
A containing ker(ϕ). It is closed since f (V(I)) = V(ϕ−1(I)). So it is homeo-
morphism onto its image. Now we want to check f # : OX −→ f∗OY is surjec-
tive. This is equivalent to checking if the map of local rings is surjective. Let
p ∈ Spec A. Then f #

p : Ap −→ ( f∗OY)p. Now (last equality is as Ap modules)

( f∗OY)p = lim−→
V3p
O( f−1(V)) = lim−→

a 6∈p
O(D(ϕ(a))) = lim−→

a 6∈p
Bϕ(a) = B⊗A Ap

Since ⊗ is right exact, the map Ap −→ B⊗A Ap is surjective.

Definition 1.2. Let A and B be two local rings. A is said to dominate B if A ⊆ B
as subring and mA ⊆ mB. i.e. mA = A ∩mB.

Theorem 1.3. [AM, Ex 5.27] Let K be a field and let Σ be the set of all local
subrings of K. If Σ is ordered by relation of domination, then Σ has maximal
elements and A ∈ Σ is maximal iff A is a valuation ring.

Proof. Since K ∈ Σ, it is non-empty. Let A1 ≤ A2 ≤ . . . be a chain and let
A = ∪i Ai and m = ∪imi. Let f ∈ A\m. Then f ∈ Ai\mi. Hence f−1 ∈ Ai ⊆ A.
So A is a local ring with the maximal ideal m. By Zorn’s lemma, there exists
maximal elements of Σ.

Let A,m ∈ Σ is a maximal element and let f ∈ K\A. Then A ⊆ A f as subring.
Clearly, mA f is proper ideal of A f (otherwise mA f = A f =⇒ f ∈ m), then it is
contained in the maximal ideal n of A f . Since A is maximal in Σ, A = A f . This
implies f−1 ∈ A.

Suppose A is a valuation ring of K. Then A is a local ring. Suppose B is another
local ring dominating it. If f ∈ B\A then f−1 ∈ A is a non-unit. So f−1 ∈ mA ⊆
mB is non-unit in B. This cannot happen since f , f−1 ∈ B. Hence B = A.

Lemma 1.4. [Ex II.3.11(a)] A closed immersion is stable under base extension.
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Proof. Let f : X −→ Y be a closed immersion and f ′ : X′ −→ Y′ be the base
extension to g : Y′ −→ Y. As topological space, X′ = g−1(X) is closed as X ⊆ Y
is closed. We want to check surjectivity of stalks f #

P : OY′, f ′(P) −→ f ′∗OX′,P for all
P ∈ X′. Let P ∈ X′ and choose an open affine U = Spec B ⊆ Y′ containing f ′(P)
such that g(U) is small enough to be contained in an open affine V = Spec A ⊆
Y. Now f−1(V) = Spec A/I for some ideal I of A. Now Spec(B⊗A A/I) ⊆ X′

is a neighbourhood of P. Since B ⊗A A/I ∼= B/IB and map B −→ B/IB is
surjective, the map of stalks is surjective as well at P by 1.1.

Lemma 1.5. [Ex II.3.11(c)] Let Y be a closed subset of a scheme X and give Y the
reduced induced structure. If Y′ is another closed subscheme such that sp(Y) =
sp(Y′) then closed immersion Y −→ X factors through Y.

Proof. Suppose X = Spec A is affine. Then Y = Spec A/I for the ideal I =
∩p∈Yp since Y has reduced induced structure. Also let Y′ = Spec A/J. Since
sp(Y) = sp(Y′), we have

√
J = I. Now the natural map A −→ A/I factors as

A −→ A/J −→ A/I. Hence statement of lemma is true for X. If X is not affine,
cover X by affine opens and then glue which will be compatible with the closed
immersions Y ∩ Spec Ai −→ Y′ ∩ Spec Ai −→ X ∩ Spec Ai.

Theorem 1.6. [Ex II.3.1] A morphism f : X −→ Y is locally of finite type ⇐⇒
for every affine open V = Spec B of Y, f−1(V) is covered by open affine subsets
Uj = Spec Aj, where each Aj is finitely generated B-algebra.

Proof. ( =⇒ ) Let Y = ∪iVi, Vi = Spec Bi such that for each i, f−1(Vi) = ∪jVij,
Vij = Spec Aij where Aij is finitely generated Bi-algebra. Let V = Spec B ⊆ Y
is given. Each Vi ∩ V can be covered by distinguished open sets Spec(Bi)bk

.
Consider bk as an element of Aij under the homomorphisms Bi −→ Aij, then
f−1(Spec(Bi)bk

) = ∪j Spec(Aij)bk
. Now (Aij)bk

is finitely generated (Bi)bk
-algebra.

We have covered V = Spec B by open affines Spec Ci whose preimages are cov-
ered by open affines Spec Dij such that each Dij is finitely generated Ci-algebra.
Now given p ∈ Spec B, it is contained in some Spec Ci. Also since Spec Ci
is open, there exists a distinguished open set of p ∈ Spec Bgp of Spec B con-
tained in Spec Ci. Identify gp with its images under the maps B −→ Ci and
B −→ Dij. Then Bgp

∼= (Ci)gp (By the compatibility condition of a presheaf) and
f−1(Spec Bgp) = ∪j Spec(Dij)gp where (Dij)gp is finitely generated (Ci)gp

∼= Bgp-
algebra. Hence (Dij)gp is f.g. B-algebra by adding the generator 1/gp.

(⇐= ) Obvious from definitions.

Theorem 1.7. [Ex II.3.2] A morphism f : X −→ Y is quasi-compact ⇐⇒ for
every affine open subset V ⊆ Y, f−1(V) is quasi-compact.
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Proof. ( =⇒ ) Let Y = ∪iVi, Vi = Spec Bi such that for each i, f−1(Vi) is quasi-
compact. Let V = Spec B is any open affine of Y. Cover V by distinguished
open sets which are also contained in one of Vi’s. Since affine schemes are quasi-
compact, it is sufficient to prove that preimages of distinguished open sets are
quasi-compact. (as Spec B will be covered by finitely many of them).

Hence we are reduced to the case where X is quasi-compact and Y = Spec B
is affine. Cover X by finite affines Spec Ai and let fi be the restriction of f to
Spec Ai. Now let D(g) ⊆ Y be distinguished open then f−1(D(g)) = ∪i f−1

i (D(g)) =
∪iD( f #

i (g)). Now each D( f #
i (g)) is quasi-compact (since it is affine) hence

f−1(D(g)) is quasi-compact.

(⇐= ) Obvious from definitions.

Theorem 1.8. [Ex II.3.3] A morphism f is of finite type ⇐⇒ for every open
affine subset V = Spec B ⊆ Y, f−1(V) = ∪i Spec Ai is finite union where each
Ai is finitely generated B-algebra.

Proof. ( =⇒ ) This follows directly from 1.6 and 1.7 and the fact that if a space
is covered by finitely many affine opens then it is quasi-compact.

(⇐= ) Obvious from definitions.

Lemma 1.9. 1. Ex II.3.13- A closed immersion is a morphism of finite type.

2. A composition of two morphisms of finite type is of finite type.

3. Morphisms of finite type are stable under base extension.

Proof. 1) Let f : X −→ Y be a closed immersion. Cover Y by affine opens
Vi =Spec Ai. Then f−1(Vi) =Spec Ai/I for some ideal I ⊆ Ai. Clearly Ai/I is
finitely generated Ai-algebra.

2) Let f : X −→ Y and g : Y −→ Z are two morphisms of finite type, let
h = g ◦ f and V = Spec C ⊆ Z. Then by theorem 1.8, g−1(V) = ∪i Spec Bi s.t. Bi
is f.g. C-algebra. Now f−1(Bi) = ∪j Spec Aij where Aij is f.g. Bi-algebra. Hence
h−1(V) = ∪i,j Spec Aij where Aij is finitely generated C-algebra.

3) Let f : X −→ Y be a morphism and f ′ : X′ −→ Y′ be the base extension

X′ X

Y′ Y

g′

f ′ f
g
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Let U = Spec B be affine open in Y s.t. g−1(U) 6= ∅ and let V = Spec A′ ⊆
g−1(U). Let f−1(U) = ∪i Spec Ai is finite union where Ai is finitely generated
B-algebra. Now f ′−1(V) = ∪i(Spec A′ ⊗B Ai). If {b1, . . . br} is finite gener-
ating set of Ai as an B-algebra then {b1 ⊗ 1, . . . br ⊗ 1} is finite generating set
(Spec A′ ⊗B Ai) as an A′-algebra.

Now cover Y with open affines {Ui}i. Then we can cover g−1(Ui) by open
affines Vij = Spec B′ij. And f ′−1(Vij) can be covered by finitely many open
affines Spec A′ijk such that A′ijk is finitely generated B′ij-algebra. Hence f ′ is of
finite type.

Now we study maps from the specturm of valuation rings to a scheme. This
will be used in giving valuative criterion of properness and seperatedness.

Lemma 1.10. Let K be a field and X a scheme. Then to give a morphism Spec
K −→ X is same as giving a point x1 ∈ X and inclusion of fields k(x1) ⊆ K.

Proof. ( =⇒ ) Suppose a morphism from Spec K −→ X given and x1 is the
image. Then we have local homomorphism of local rings Ox1,X −→ K which
induces inclusion k(x1) ⊆ K.

(⇐= ) Suppose k(x1) ⊆ K is given. This induces local homomorphismOx1,X −→
K which induces morphism Spec K −→ X taking t1 to x1.

Lemma 1.11. Let R be a valuation ring with quotient field K, let X be a scheme.
To give a morphism Spec R −→ X is same as giving two points x0, x1 ∈ X with
x0 ∈ {x1} (x0 is specialization of x1), and an inclusion of fields k(x1) ⊆ K such
that R dominates the local ring Ox0,Z of x0 on the subscheme Z = {x1} of X
with reduced induced structure.

Proof. ( =⇒ ) Suppose Spec R −→ X is given. Let t0 = mR and t1 = (0)
is the generic point. Since Spec R is reduced, by lemma 1.5 morphism Spec
R −→ X factors through Z. Now Z is reduced and irreducible hence integral
with the function field k(x1) = Ox1,Z. We have local homomorphism of local
rings Ox0,Z −→ R compatible with the inclusion k(x1) ⊆ K. Thus Ox0,Z −→ R
is injective and R dominates Ox0,Z.

Ox0,Z R

k(x1) K

( ⇐= ) Given data consisting of x0, x1, the inclusion k(x1) ⊆ K and that R
dominates O, we have inclusion O −→ R which induces Spec R −→ SpecO.



§1 Preliminaries 5

Choose an affine neighbourhood U = Spec A of x0 in Z, we haveO = Ap where
x0 = p. Thus we have natural map A −→ O which gives SpecO −→ Spec A.
Compose this with natural maps Spec A −→ Z −→ X.

Lemma 1.12. Let f : X −→ Y be quasi-compact morphism of schemes. Then
the subset f (X) is closed ⇐⇒ f (X) is stable under specialization.

Proof. ( =⇒ ) Obvious from definitions.

( ⇐= ) The map Xred −→ X −→ Y is still quasi-compact. By lemma 1.5, this
map factors as Xred −→ f (X) −→ Y where f (X) is given reduced induced
structure and the first map is still quasi-compact. So WLOG, we can assume
that X and Y are reduced and f (X) = Y. Let y ∈ Y is a point. We want to show
that y ∈ f (X). Let U be an affine neighbourhood of y, then by 1.7, f−1(U) is
quasi-compact. So further we can assume Y is affine.

Cover X by finitely many open affines Xi. Since y ∈ f (X), we have y ∈ fi(X)

for some i. Let Xi = Spec A. Let Yi = fi(X) with the reduced induced struc-
ture. Then Yi is also affine. Let Xi = Spec A and Yi = Spec B, then the ring
homomorphism ϕ : B −→ A which induces f is injective (Let ϕ(b) = 0 =⇒
f−1(D(b)) = D(ϕ(b)) = D(0) = ∅ =⇒ D(b) = ∅ since Xi −→ Yi is dom-
inant, so b ∈ N(B) =⇒ b = 0 since B is reduced). The point y corresponds
to a prime ideal p of B and let p′ ⊆ p be the minimal prime ideal. Then p′

corresponds to a point y′ ∈ Yi which specializes to y.

Claim: y′ ∈ f (Xi).

Since localization is an exact functor, we have Bp′ ⊆ (A)p′ ∼= A ⊗B Bp′ . Now
Bp′ is a field because p′ is a minimal prime ideal so Bp′ has only one prime ideal
which equals to N(Bp′). Now B is reduced so N(B) = 0. Since localization
commutes with taking radicals, we have N(Bp′) = 0.

B A

Bp′ A⊗B Bp′

Let n be any prime ideal of A⊗B Bp′ . And let n′ is its contraction to A. Then by
commutativity of above diagram, n′ ∩ A = p′. In other words, f (x′) = y′ where
x′ = n′. Now the lemma follows from claim.
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§2. Main theorem of elimination theory

Here we give the proof of the Main theorem of elimination theory (2.7). The
theorem follows easily from 2.6 which is very difficult to prove and most part
of this note is devoted in proving this. 2.6 follows from Valuative criterion of
properness (2.5) and the properties of morphisms of finite type (lemma 1.9).

Theorem 2.1. If f : X −→ Y is any morphism of affine schemes, then f is
seperated.

Proof. Let X=Spec A, Y=Spec B. Then we have following diagram:

X A

X×Y X X A⊗B A A

X Y A B

The map A ×B A −→ A, a ⊗ a′ 7→ aa′ is surjective. Hence by 1.1, ∆ : X −→
X×Y X is a closed immersion.

Corollary 2.2. A morphism f : X −→ Y of arbitrary schemes is seperated ⇐⇒
the image of ∆ is closed in X×Y X.

Proof. ( =⇒ ) Obvious from definition.

( ⇐= ) In order to prove that ∆ is closed immersion, it is sufficient to check
that it is homeomorphism onto its image and map of sheaves is surjective. Let
p1 : X ×Y X −→ X be the first projection. Then p1 ◦ ∆ = IdX which shows
∆ is homeomorphism onto its image. Note that surjectivity of sheaves is a lo-
cal property and locally a map of schemes is given by a map between affine
schemes. By theorem 2.1, locally the maps of sheaves is surjective. (exact argu-
ment is similar to the proof of 1.4).

Theorem 2.3 (Valuative criterion of separatedness). Let f : X −→ Y be a mor-
phism of schemes. Then f is seperated iff the following holds: ∆ : X −→
X ×Y X is quasi-compact and for any valuation ring R with quotient field K, in
the following commutative diagram

Spec K X

Spec R Y
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there is atmost one lifting Spec R −→ X making the whole diagram commute.

Proof. ( =⇒ ) Suppose there are two morphisms h, h′ making following di-
garam commute

Spec K X

Spec R Y

f
h′

h

By universal property of fibered products, we obtain h′′ :Spec R −→ X ×Y X.
The generic point t1 of Spec R has image in diagonal (since restriction of h, h′ to
Spec K is same). Since ∆(X) is closed, h′′(t0) ∈ ∆(X). So both h, h′ send t0, t1
to the same points x0, x1 of X. k(x1) ⊆ K induced by h, h′ are also same. Hence
h = h′ by 1.11.

( ⇐= ) By 2.2, it is sufficient to prove that ∆(X) is closed. By lemma 1.12, it
is sufficient to prove that ∆(X) is closed under specilization (quasi-compact is
given in hypothesis). So let ξ1 ∈ ∆(X) and ξ1  ξ0 be a specilization.

Let Z = {ξ1} with the reduced induced structure. Then Z is reduced and irre-
ducible hence integral with ξ1 as its generic point. Hence k(ξ1) = Oξ1,Z = K is
function field of Z and Oξ0,Z ⊆ K as subring (since quotient field of Oξ0,Z is K).
By theorem 1.3, there is a valuation ring R of K dominating Oξ0,Z. By lemma
1.11, we obtain a morphism of Spec R into X×Y X sending t0, t1 to ξ0, ξ1. Com-
posing with projections p1, p2 gives two morphism of Spec R to X which give
same morphism to Y. Also their restriction to Spec K is same since ξ1 ∈ ∆(X).

Spec R

X

X×Y X X

X Y

h

h

h

∆
IdX

By condition of the theorem, these two morphisms from Spec R to X are same,
say h. Now by universal property of fibered products, the map Spec R −→
X×Y X factors as shown above. Hence ξ0 ∈ ∆(X).

Corollary 2.4. Assume all the schemes below are noetherian.

1. Seperatedness is preserved by base change.
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2. Seperatedness is local on the base.i.e. A morphism f : X −→ Y is seper-
ated iff Y is covered by open subsets Vi s.t. f−1(Vi) −→ Vi is seperated for
each i.

3. Closed immersions are seperated.

Proof. 1. Let f : X −→ Y be a seperated morphism and Y′ −→ Y be any
morphism. We must show h and h′ as shown in figure are the same maps.

Spec R

Spec K X′ X X′ X

Spec R Y′ Y Y′ Y

p1◦ f
∃!

f ′

p1

f f ′ f
h

h′

By 2.3, p1 ◦ h = p1 ◦ h. By universal property of fibered products, h = h′.

2. ( =⇒ ) By first part, f−1(Vi) −→ Vi is seperated since it is base change by
inclusion Vi ↪−→ X.

( ⇐= ) To check ∆(X) ↪−→ X ×Y X a closed subset, it suffices to check on an
open cover. If g : X×Y X −→ Y is the natural morphism, then open cover Vi of
Y induces an open cover f−1(Vi)×Vi f−1(Vi) of X ×Y X. Now f−1(Vi) −→ Vi
implies f−1(Vi) −→ f−1(Vi)×Vi f−1(Vi) is a closed immersion.

3. Cover f : X −→ Y be a closed immersion. Cover Y by affine open subsets Vi.
Then f−1(Vi) is affine open of X. Now result follows from part (2) and 2.1.

Theorem 2.5 (Valuative criterion of properness). Let Y be a noetherian scheme,
f : X −→ Y be a morphism of finite type. Then f is proper ⇐⇒ for any
valuation ring R with quotient field K, in the following commutative diagram

Spec K X

Spec R Y

f

there is exactly one lifting Spec R −→ X making the whole diagram commute.

Proof. ( =⇒ ) Since f is seperated, uniqueness of lifting will from theorem 2.3
once we know its existence. Consider the base extension Spec R −→ Y and let
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X′ =Spec R×Y X. By universal property, we get map Spec K −→ X′.

Spec K X′ X

Spec R Y

f ′ f

Let ξ1 be image of the point t1 ∈ Spec K. Let Z = {ξ1} ⊆ X′ be closed sub-
scheme with the reduced induced structure. Since f ′ is closed, f ′(Z) is closed.
Since ξ1 maps to t0, the generic point of Spec R, we have f ′(Z) =Spec R.
Let ξ0 ∈ Z with f ′(ξ0) = t0. So we get local homomorphism of local rings
R −→ Oξ0,Z corresponding to morphism f ′.

The function field of Z is k(ξ1) ⊆ K. By theorem 1.3, R is maximal for the dom-
inance relation between local subrings of R. Hence R ∼= Oξ0,Z and in particular
R dominates it (Oξ0,Z has field of fractions k(ξ1) ⊆ K as fields). By lemma 1.11,
we get a morphism of Spec R −→ X′ sending t0, t1 to ξ0, ξ1. Compose it with
X′ −→ X to obtain the required morphism.

( ⇐= ) Suppose condition of this theorem holds. By 2.3, f is seperated and it
is finite type by hypothesis. So we want to show it is universally closed. Let
f : Y′ −→ X be any map and f ′ : X′ −→ Y′ be base extension. Let Z′ be a
closed subset of X′ and give it reduced induced structure. Want to show f ′(Z′)
is closed in Y′.

Z′ ⊆ X′ X

Y′ Y

f ′ f

Since Z′ ⊆ X′ is closed immersion and f ′ is of finite type, its restriction to Z′ is
also finite type. In particular Z′ −→ Y is quasi-compact (by definition). Hence
by lemma 1.12, we need to show that f ′(Z′) is stable under specialization.

Let z1 ∈ Z′, y1 = f ′(z1) ∈ Y′ and let y1  y0 be a specialization. Let Z = {y1}
with reduced induced structure. The quotient field of Oy1,Z is k(y1) which is
subfield of K = k(z1). Let R be a valuation ring of K which dominates Oy1,Z
(which exists by theorem 1.3).

By lemma 1.11, we have morphisms making following diagram commute:

Spec K Z X

Spec R Y′ Y

f ′ f

Now see the diagram in the proof of (3) of the next proposition.

Corollary 2.6. Assume all the schemes below are noetherian.
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1. Closed immersions are proper.

2. A composition of proper morphisms is proper.

3. Proper morphisms are stable under base change.

Proof. 1. Let f : X −→ Y be a closed immersion. By 1.4, f is stable under
base extension. In particular, f is universally closed. By 1.9(a), f is of
finite type. By 2.4(c), f is seperated.

2. Let f and g are proper morphisms. By lemma 1.9(b), g ◦ f is of finite type.
Hence we can use valuative criterion to check properness of g ◦ f .

Spec K X Spec K X

Y Y

Spec R Z Spec R Z

f f

g g∃!

∃!

3. Let f : X −→ Y be a proper morphism and f ′ : X′ −→ Y′ be its base
change to Y′ −→ Y. By lemma 1.9(c), f ′ is of finite type. Since Y′ is
noetherian, we can use valuative criterion to check properness of f ′. The
following diagram is self explainatory:

Spec K X′ X Spec K X′ X

Spec R Y′ Y Spec R Y′ Y

f f
∃! ∃!

For second diagram, we used universal property of fibered products.

Theorem 2.7 (Main theorem of elimination theory). A projective morphism of
noetherian schemes is proper.

Proof. Let f : X −→ Y be a projective morphism. The we have

Pn
Y Pn

Z

X Y Spec Z
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Here X −→ Pn
Y is closed immersion. By 2.6, it is sufficient to prove for X = Pn

Z

and Y=Spec Z. Given,
Spec K Pn

Z

Spec R Spec Z

Let z1 be the point in Spec K and ξ1 be the image of z1 in X.

Existence of the lift: Cover Pn
Z is covered by affine opens Vi=Spec Z[x0/xi, . . . , xn/xi].

1. WLOG we can assume that ξ1 ∈ ∩iVi. (We are using here induction on n
with hypothesis that if ξi ∈ Pn then there exists a lift Spec R −→ Pn. This
is true for n = 0. If ξi ∈ Pn

Z −Vi(∼= Pn−1
Z ) then we are done by induction

hypothesis)

2. So xi/xj ∈ Oξ1 are invertible. We have inclusion k(ξ1) ⊆ K given by
morphism Spec K −→ Pn

Z (1.10). Let fij be the image of xi/xj in K which
are non-zero. Let v : K× −→ G be associated valuation. Let gi = v( fi0)
and gk be minimal among them.

3. fik ∈ R for each i since v( fik) = gi − gk ≥ 0. Define homomorphism

Z[x0/xi, . . . , xn/xi] −→ R, xi/xk 7−→ fik

which induces morphism Spec R −→ Vi compatible with the morphism
Spec K −→ Pn

Z (since homomorphism is compatible with k(ξi) ⊆ K).

Uniqueness of the lift: Let f :Spec R −→ Pn
Z be a lift. Since {Vi} cover Pn

Z,
{ f−1(Vi)} cover Spec R. Since R is local, f−1(Vi)=Spec R for some i. So f factors
through Vi. Since f is compatible with Spec R −→ Vi, use above contruction to
show f is the map constructed above.

If there are two liftings Spec R −→ Vi and Spec R −→ Vj. Then the first diagram
factors as second diagram (Ai = Z[x0/xi, . . . , xn/xi])

Ai Ai

R Ai[(xj/xi)
−1] R

Aj Aj

This is because fij, f ji = f−1
ij ∈ R hence fij ∈ R×. Now note that Spec Ai and

Spec Aj are patched along Ai[(xj/xi)
−1] = Aj[(xi/xj)

−1]. So both maps actually
restrict to Vi ∩Vj and are same map.
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