Main theorem of Elimination theory

Ajay Prajapati

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur

Under the guidance of Dr. Anand Sawant

Resultant of two polynomials

$$f(X) = a_n X^n + \ldots + a_0,$$

$$g(X) = b_m X^m + \ldots + b_0$$

be two polynomials in A[X] where A is an integral domain. f and g have common root (in an algebraic closure containing A) \iff

$$det \begin{bmatrix} a_0 & \dots & a_n & 0 & \dots & 0 \\ 0 & a_0 & \dots & a_{n-1} & a_n \\ \vdots & & & & \\ b_0 & \dots & b_n & 0 & \dots & 0 \\ 0 & b_0 & \dots & b_{n-1} & b_n & 0 \\ \vdots & & & & & \end{bmatrix} = 0$$

k-algebraically closed field

Another interpretation of resultants

Let $f, g \in k[y_1, \ldots, y_r][X]$. Then f and g define hypersurfaces H_f and H_g in $\mathbb{A}^r \times \mathbb{A}^1$. The previous slide says that projection of intersection of two hypersurfaces is again a hypersurface. If $\pi_1 : \mathbb{A}^r \times \mathbb{A}^1 \longrightarrow \mathbb{A}^r$ is the projection, then $\pi_1(H_f \cap H_g) =$ zeros of resultant of f and g.

k-algebraically closed field

Another interpretation of resultants

Let $f, g \in k[y_1, \ldots, y_r][X]$. Then f and g define hypersurfaces H_f and H_g in $\mathbb{A}^r \times \mathbb{A}^1$. The previous slide says that projection of intersection of two hypersurfaces is again a hypersurface. If $\pi_1 : \mathbb{A}^r \times \mathbb{A}^1 \longrightarrow \mathbb{A}^r$ is the projection, then $\pi_1(H_f \cap H_g) =$ zeros of resultant of f and g.

What about general algebraic sets? i.e. closed sets. **E.g.:** yX - 1 = 0 in $\mathbb{A}^1 \times \mathbb{A}^1$ is closed and its projection on \mathbb{A}^1 is $\mathbb{A}^1 - \{0\}$. **Fix:** Use projective coordinates in second component. Main theorem of Elimination theory [Eisenbud, theorem 14.1]

If X is any variety over k, and Y is an Zariski closed subset of $X \times \mathbb{P}_k^n$, then image of Y under projection $X \times \mathbb{P}_k^n \longrightarrow X$ is closed.

An elementary proof can be found in the chapter 14 exercises of the book *Commutative Algebra with a view towards algebraic geometry* Analogue of affine space Aⁿ_k is the scheme Spec k[x₁,..., x_n] (again denoted by Aⁿ_k).

Proj construction

Let S be a graded ring. Let S_+ be the ideal $\bigoplus_{d>0} S_d$ (irrelevant ideal). Define set

 $\mathsf{Proj}\, S = \{ \mathfrak{p} \subseteq S \text{ prime } | \mathfrak{p} \text{ homogenous and } \mathfrak{p} \not\supseteq S_+ \}$

If a is a homogenous ideal, then $V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Proj} S | \mathfrak{a} \subseteq \mathfrak{p}\}$. (sheaf of rings is also defined)

Analogue of affine space Aⁿ_k is the scheme Spec k[x₁,..., x_n] (again denoted by Aⁿ_k).

Proj construction

Let S be a graded ring. Let S_+ be the ideal $\bigoplus_{d>0} S_d$ (irrelevant ideal). Define set

 $\mathsf{Proj}\, S = \{ \mathfrak{p} \subseteq S \text{ prime } | \mathfrak{p} \text{ homogenous and } \mathfrak{p} \not\supseteq S_+ \}$

If a is a homogenous ideal, then $V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Proj} S | \mathfrak{a} \subseteq \mathfrak{p}\}$. (sheaf of rings is also defined)

Analog of \mathbb{P}_k^n is the scheme Proj $k[x_0, ... x_n]$ (again denoted by \mathbb{P}_k^n).

(日)

Analogue of affine space Aⁿ_k is the scheme Spec k[x₁,..., x_n] (again denoted by Aⁿ_k).

Proj construction

Let S be a graded ring. Let S_+ be the ideal $\bigoplus_{d>0} S_d$ (irrelevant ideal). Define set

Proj $S = \{ \mathfrak{p} \subseteq S \text{ prime } | \mathfrak{p} \text{ homogenous and } \mathfrak{p} \not\supseteq S_+ \}$

If a is a homogenous ideal, then $V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Proj} S | \mathfrak{a} \subseteq \mathfrak{p}\}$. (sheaf of rings is also defined)

Analog of \mathbb{P}_k^n is the scheme Proj $k[x_0, ...x_n]$ (again denoted by \mathbb{P}_k^n). \mathbb{P}_k^n is covered by n + 1 affine patches each isomorphic to \mathbb{A}_k^n where i^{th} affine patch is Spec $k[x_0/x_i, ...x_n/x_i]$.

(日) (四) (日) (日) (日)

Theorem

A topological space X is Hausdorff \iff diagonal is closed in $X \times X$

Seperated morphism

A morphism of schemes $X \longrightarrow Y$ is said to be *seperated* if the image of diagonal map $\Delta(X)$ is closed.

▲ ∰ ▶ ▲ ≣ ▶ ▲

• In usual euclidean topology, $\mathbb{P}^n(\mathbb{C})$ is compact while $\mathbb{A}^n(\mathbb{C})$ is not.

< A

- In usual euclidean topology, $\mathbb{P}^n(\mathbb{C})$ is compact while $\mathbb{A}^n(\mathbb{C})$ is not.
- In general topology, X is compact $\iff X \times Z \longrightarrow Z$ is closed for all topological spaces Z.
- Relative version in topology: A map X → Y is called proper if preimage of every compact set in Y is a compact set in X.

- In usual euclidean topology, $\mathbb{P}^n(\mathbb{C})$ is compact while $\mathbb{A}^n(\mathbb{C})$ is not.
- In general topology, X is compact ⇐⇒ X × Z → Z is closed for all topological spaces Z.
- Relative version in topology: A map X → Y is called proper if preimage of every compact set in Y is a compact set in X.
- **Example:** X is compact $\iff X \longrightarrow \{*\}$ is proper.
- If X and Y are Hausdorff then a map X → Y is proper ⇔ for all continuous maps Z → Y, the pullback X ×_Y Z → Z is closed.

- In usual euclidean topology, $\mathbb{P}^n(\mathbb{C})$ is compact while $\mathbb{A}^n(\mathbb{C})$ is not.
- In general topology, X is compact ⇐⇒ X × Z → Z is closed for all topological spaces Z.
- Relative version in topology: A map X → Y is called proper if preimage of every compact set in Y is a compact set in X.
- **Example:** X is compact $\iff X \longrightarrow \{*\}$ is proper.
- If X and Y are Hausdorff then a map X → Y is proper ⇔ for all continuous maps Z → Y, the pullback X ×_Y Z → Z is closed.

A morphism $X \longrightarrow Y$ is **universally closed** if base extension to morphism $Z \longrightarrow Y$ is closed for all such morphisms.

- In usual euclidean topology, $\mathbb{P}^n(\mathbb{C})$ is compact while $\mathbb{A}^n(\mathbb{C})$ is not.
- In general topology, X is compact $\iff X \times Z \longrightarrow Z$ is closed for all topological spaces Z.
- Relative version in topology: A map X → Y is called proper if preimage of every compact set in Y is a compact set in X.
- **Example:** X is compact $\iff X \longrightarrow \{*\}$ is proper.
- If X and Y are Hausdorff then a map X → Y is proper ⇔ for all continuous maps Z → Y, the pullback X ×_Y Z → Z is closed.

A morphism $X \longrightarrow Y$ is **universally closed** if base extension to morphism $Z \longrightarrow Y$ is closed for all such morphisms.

Proper morphisms (Grothendieck)

Seperated, finite type and universally closed.

Ajay Prajapati

Closed immersions

A morphism $f: X \longrightarrow Y$ is called *closed immersion* if it is homeomorphism onto its image which is a closed subset of Y. (and some condition on sheaf of rings)

Closed immersions

A morphism $f: X \longrightarrow Y$ is called *closed immersion* if it is homeomorphism onto its image which is a closed subset of Y. (and some condition on sheaf of rings)

A morphism $f: X \longrightarrow Y$ is called **projective morphism** if it factors as

where g is a closed immersion.

Theorem, [Hartshorne, Theorem II.4.9]

A projective morphism of (noetherian) schemes is proper.

Valuative criterion of properness

Let Y be a noetherian scheme, $f : X \longrightarrow Y$ be a morphism of finite type. Then f is proper \iff for any valuation ring R with quotient field K, in the following commutative diagram

there is exactly one lifting Spec $R \longrightarrow X$ making whole diagram commute.

Corollary

- Closed immersions are proper.
- A composition of proper morphisms is proper.
- Proper morphisms are stable under base change.

Let R be any valuation ring with quotient field K and we have morphisms such that following diagram commutes:

