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Elimination Theory

Resultant of two polynomials

f (X ) = anX
n + . . .+ a0,

g(X ) = bmX
m + . . .+ b0

be two polynomials in A[X ] where A is an integral domain.
f and g have common root (in an algebraic closure containing A)⇐⇒

det



a0 . . . an 0 . . . 0
0 a0 . . . an−1 an
...
b0 . . . bn 0 . . . 0
0 b0 . . . bn−1 bn 0
...


= 0
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Main theorem of Elimination theory

k-algebraically closed field

Another interpretation of resultants

Let f , g ∈ k[y1, . . . , yr ][X ]. Then f and g define hypersurfaces Hf and Hg

in Ar × A1. The previous slide says that projection of intersection of two
hypersurfaces is again a hypersurface. If π1 : Ar × A1 −→ Ar is the
projection, then π1(Hf ∩ Hg ) =zeros of resultant of f and g .

What about general algebraic sets? i.e. closed sets.
E.g.: yX − 1 = 0 in A1×A1 is closed and its projection on A1 is A1−{0}.
Fix: Use projective coordinates in second component.
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Main theorem of Elimination theory [Eisenbud, theorem 14.1]

If X is any variety over k , and Y is an Zariski closed subset of X × Pn
k ,

then image of Y under projection X × Pn
k −→ X is closed.

An elementary proof can be found in the chapter 14 exercises of the book
Commutative Algebra with a view towards algebraic geometry
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Proj Construction

1 Analogue of affine space An
k is the scheme Spec k[x1, ..., xn] (again

denoted by An
k).

Proj construction

Let S be a graded ring. Let S+ be the ideal
⊕

d>0 Sd (irrelevant ideal).
Define set

ProjS = {p ⊆ S prime |p homogenous and p 6⊇ S+}

If a is a homogenous ideal, then V (a) = {p ∈ ProjS |a ⊆ p}. (sheaf of
rings is also defined)

Analog of Pn
k is the scheme Proj k[x0, ...xn] (again denoted by Pn

k).
Pn
k is covered by n + 1 affine patches each isomorphic to An

k where i th

affine patch is Spec k[x0/xi , . . . xn/xi ].
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Seperatedness

Theorem

A topological space X is Hausdorff ⇐⇒ diagonal is closed in X × X

Seperated morphism

A morphism of schemes X −→ Y is said to be seperated if the image of
diagonal map ∆(X ) is closed.

X

X ×Y X X

X Y

IdX

IdX

∆
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In usual euclidean topology, Pn(C) is compact while An(C) is not.

In general topology, X is compact ⇐⇒ X × Z −→ Z is closed for all
topological spaces Z .
Relative version in topology: A map X −→ Y is called proper if
preimage of every compact set in Y is a compact set in X .
Example: X is compact ⇐⇒ X −→ {∗} is proper.
If X and Y are Hausdorff then a map X −→ Y is proper ⇐⇒ for all
continuous maps Z −→ Y , the pullback X ×Y Z −→ Z is closed.

A morphism X −→ Y is universally closed if base extension to morphism
Z −→ Y is closed for all such morphisms.

X ×Y Z X

Z Y

Proper morphisms (Grothendieck)

Seperated, finite type and universally closed.
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Main theorem of Elimination theory

Closed immersions

A morphism f : X −→ Y is called closed immersion if it is
homeomorphism onto its image which is a closed subset of Y . (and some
condition on sheaf of rings)

A morphism f : X −→ Y is called projective morphism if it factors as

Y × Pn
Z Pn

Z

X Y Spec Zf

g

where g is a closed immersion.
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Theorem, [Hartshorne, Theorem II.4.9]

A projective morphism of (noetherian) schemes is proper.

t(V )×SpecZ Pn
Z Pn

Z

t(V )×Spec k Pn
k t(V ) Spec Zf

g
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Valuative criterion of properness

Let Y be a noetherian scheme, f : X −→ Y be a morphism of finite type.
Then f is proper ⇐⇒ for any valuation ring R with quotient field K , in
the following commutative diagram

Spec K X

Spec R Y

f

there is exactly one lifting Spec R −→ X making whole diagram commute.
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Corollary

Closed immersions are proper.

A composition of proper morphisms is proper.

Proper morphisms are stable under base change.

Pn
Y Pn

Z

X Y Spec Z
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Let R be any valuation ring with quotient field K and we have morphisms
such that following diagram commutes:

Spec K Pn
Z

Spec R Spec Z
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