
Some classical applications of Homology groups

Ajay Prajapati
17817063

Dept. of Mathematics and Statistics
Indian Institute of Technology, Kanpur

End-Semester Exam presentation

Ajay Prajapati Algebraic Topology 1 May 2021 1 / 18



Outline of today’s talk

A theorem about homology of complements of embedded spheres and
disks in a sphere.

Jordan Curve theorem and its generalization

Invariance of Domain

A theorem about manifolds

A theorem about division algebras over R
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First we compute homology groups of complements of embedded spheres
and disks in a sphere.

Theorem

1 For an embedding h : Dk −→ Sn, H̃i (S
n − h(Dk)) = 0 for all i .

2 For an embedding h : Sk −→ Sn with k < n, then

H̃i (S
n − h(Sk)) ∼=

{
Z for i = n − k − 1,

0 otherwise

Jordan Curve Theorem

Let C be a simple closed curve in S2. Then C seperates S2 into two
components.

(Brouwer) Above theorem generalises the Jordan Curve Theorem: A
subspace of Sn homeomorphic to Sn−1 seperates in into two components
and these components has same homology groups as points.
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Proof

Theorem

For an embedding h : Dk −→ Sn, H̃i (S
n − h(Dk)) = 0 for all i .

Proof(a)

We use induction on k.

Base case: For k = 0, Sn − h(D0) is homeomorphic to Rn.

For inductive hypothesis, we replace Dk by cube I k . Let
A = Sn − h(I k−1 × [0, 1/2]) and B = Sn − h(I k−1 × [1/2, 1]), so
A∩B = Sn − h(I k) and X = Å∪ B̊ = A∪B = Sn − h(I k−1 ×{1/2})

Induction Hypothesis: H̃i (A ∪ B) = 0 for all i

Inductive Step: Mayer-Vietoris sequence gives isomorphisms
Φi : H̃i (S

n − h(I k)) −→ H̃i (A)⊕ H̃i (B) for all i .

Modulo signs, the two components of Φi are induced by the
inclusions Sn − h(I k) ↪−→ A and Sn − h(I k) ↪−→ B.
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Proof continued

Theorem

For an embedding h : Dk −→ Sn, H̃i (S
n − h(Dk)) = 0 for all i .

Proof

Suppose ∃ an i-dimensional cycle α of Sn − h(I k) which is not
boundary in Sn-h(I k). Then α is not a boundary in atleast of A or B.

By iteration, produce a nested sequence of of closed intervals
I1 ⊃ I2 . . . in the last coordinate of I k shrinking down to a point p ∈ I
such that α is not a boundary in Sn − h(I k−1 × Im) for any m.

But α is the boundary of a chain β in Sn − h(I k−1 × {p}).

β is finite linear combination of singular simplicies with compact
image in Sn − h(I k−1 × {p}).

Since Sn − h(I k−1 × Im) forms increasing open cover of
Sn − h(I k−1 × {p}), by compactness, β is a chain of
Sn − h(I k−1 × Im) for some m.
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Proof of (b)

Theorem

For an embedding h : Sk −→ Sn with k < n, then

H̃i (S
n − h(Sk)) ∼=

{
Z for i = n − k − 1,

0 otherwise

Proof

When k = 0, then Sn − h(S0) is homotopic to Sn−1.

Let A = Sn − h(Dk
+) and B = Sn − (Dk

−). A ∩ B = Sn − h(Sk) and

X = Å ∪ B̊ = A ∪ B = Sn − h(Sk−1). By (a), we have
H̃i (A) ∼= H̃i (B) ∼= 0.

Apply Mayer-Vietoris with A and B, we have
H̃i (S

n − h(Sk)) ∼= H̃i+1(Sn − h(Sk−1)) for all i .
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Consequences

Applying previous proof to an embedding h : Sn −→ Sn, the
Mayer-Vietoris sequence ends with

H̃0(A)⊕ H̃0(B) −→ H̃0(Sn − h(Sn−1)) −→ 0

So H̃0(Sn − h(Sn−1)) = 0 which appears to contradict the fact that
Sn − h(Sn−1) has two path components.

unless h is surjective A ∩ B = ∅ and the Mayer-Vietoris sequence
ends with H̃−1(∅) which is Z.

So Sn cannot be embedded in Rn

More generally, there is no continuous injection Rm −→ Rn for m > n.
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Alexander Horned Sphere

Jordan Schoenflies Theorem

Let C be a simple closed curve, then there is a homeomorphism
f : R2 −→ R2 s.t. f (C ) is the unit circle in the plane.

This theorem is not true for R3 and a counterexample is provided by
Alexander Horned Sphere.

A subspace of S of R3 homeomorphic to S2 such that unbounded
component of R3 − S is not simply connected.

Construction

B0-a ball, X0-a solid torus obtained from B0 by attaching I × D2

along ∂I × D2.

To form X1 ⊂ X0, delete part of short handle so that what remains is
a pair of linked handles attached to ball B1 which is union of B0 and
two horns.

Xn is a ball with 2n handles attached and Bn is obtained from Bn−1

by attaching 2n horns.
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Alexander Horned Sphere
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Properties

It can be proved that there is a map f : B0 −→ R3 whose image is
the previous figure.

By compactness, f is homeomorphism onto its image, B = f (B0) and
S = f (∂B0) is the Alexander horned sphere.

Computation of π1(R3 − B)

B = ∩nXn, so R3 − B = ∪n(R3 − Xn). Let Yn = R3 − Xn.

It can be shown that π1(Yn) is a free group on 2n generators and
Yn ↪−→ Yn+1 induces an injection π1(Yn) −→ π1(Yn+1).

Suppose {αn
i } are generators of π1(Yn). Then αn

i 7−→ [αn+1
2i+1, α

n+1
2i+2].

So the map π1(Yn) −→ π1(Yn+1) is an injection F2n −→ F2n+1 .

π1(R3 − B) ∼= ∪nπ1(Yn) by compactness argument: Each loop in
R3 − B lies in some Yn.

Clearly, π1(R3 − B) has trivial abelianization. In particular, it is a
non-free group which is union of increasing sequence of free groups.
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Theorem(Invariance of Domain) (Brouwer)

Let U ⊂ Rn be a open set, and h : U −→ Rn is an embedding, then the
image h(U) is an open set in Rn.

Proof

Viewing Sn as the one-point compactification of Rn, an equivalent
statement is that h(U) is open in Sn.

Each x ∈ U is the center point of some disk Dn ⊂ U. It suffices to
prove that h(Dn − ∂Dn) is open in Sn.

Restriction of h to Dn and ∂Dn are again embeddings. Hence
Sn − h(∂Dn) has two path-components.

These path components are h(Dn − ∂Dn) and Sn − h(Dn) (path
connected by proposition).

Path components of Sn − h(∂Dn) are same as its components.

The components of a space with finitely many components are open.

h(Dn − ∂Dn) is open in Sn − h(∂Dn) and hence also in Sn.
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Manifold

Definition

M is called manifold if M is Hausdorff and is ”locally Euclidean of
dimension n” i.e. for each x ∈ M, ∃ nbhd U of x homeomorphic to an
open subset of Rn.

Equivalent definitions of a manifold

U can be taken to be homeomorphic to an open ball of Rn or to Rn itself.
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Application to Manifolds

Theorem

Let M be a compact n-manifold and N be a connected n-manifold, then
every injective map from M in N is homeomorphism.

Proof

Suppose h : M −→ N be an injective map. Clearly h is an embedding.

Therefore suffices to prove that h is surjective. Since N is connected,
suffices to prove that h(M) is is both open and closed.

h(M) is closed.

Use invariance of domain.
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Division Algebras

Algebra

An algebra structure on Rn is a bilinear map µ : Rn × Rn −→ Rn.

Commutativity, associativity and identity element are not assumed.

Division Algebra

An algebra is a division algebra if the equations ax = b and xa = b has
solution whenever a 6= 0.

R,C,H,O are examples.

Frobenius Theorem (1877)

Upto isomorphism R, C and H are the only finite dimensional associative
division algebras over R with an identity element.
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Some results on f.d. division algebras over R

Theorem

If Rn has a structure of division algebra over R, then n = 2m.

Milnor, Bott and Kervaire (1958)

Any finite dimensional division algebra over R must have dimension 1, 2, 4
or 8.

Theorem

R and C are the only finite dimensional division algebras over R which are
commutative and have an identity.
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Proof

Proof

First assume that Rn has commutative.

Define a map f : Sn−1 −→ Sn−1, x 7−→ x2/|x2|.
f is continuous since the multiplication map and the norm map are
continuous(?)

f (x) = f (−x) so we have f̄ : RPn−1 −→ Sn−1 which is injective: If
f (x) = f (y), then x2 = α2y2.

x2 − α2y2 = 0 =⇒ (x + αy)(x − αy) = 0 =⇒ x = ±αy

Since RPn−1 and Sn−1 are compact Hausdorff, f̄ is an embedding.

If n 6= 1, then f̄ is surjective. Thus RPn−1 ∼= Sn−1 =⇒ n = 2

Ajay Prajapati Algebraic Topology 1 May 2021 16 / 18



Proof

Proof

First assume that Rn has commutative.

Define a map f : Sn−1 −→ Sn−1, x 7−→ x2/|x2|.
f is continuous since the multiplication map and the norm map are
continuous(?)

f (x) = f (−x) so we have f̄ : RPn−1 −→ Sn−1 which is injective: If
f (x) = f (y), then x2 = α2y2.

x2 − α2y2 = 0 =⇒ (x + αy)(x − αy) = 0 =⇒ x = ±αy

Since RPn−1 and Sn−1 are compact Hausdorff, f̄ is an embedding.

If n 6= 1, then f̄ is surjective. Thus RPn−1 ∼= Sn−1 =⇒ n = 2

Ajay Prajapati Algebraic Topology 1 May 2021 16 / 18



Proof

Proof

First assume that Rn has commutative.

Define a map f : Sn−1 −→ Sn−1, x 7−→ x2/|x2|.
f is continuous since the multiplication map and the norm map are
continuous(?)

f (x) = f (−x) so we have f̄ : RPn−1 −→ Sn−1 which is injective: If
f (x) = f (y), then x2 = α2y2.

x2 − α2y2 = 0 =⇒ (x + αy)(x − αy) = 0 =⇒ x = ±αy

Since RPn−1 and Sn−1 are compact Hausdorff, f̄ is an embedding.

If n 6= 1, then f̄ is surjective. Thus RPn−1 ∼= Sn−1 =⇒ n = 2

Ajay Prajapati Algebraic Topology 1 May 2021 16 / 18



Proof continued...

Proof

Suppose A is a 2-dimensional commutative division algebra with identity
1A. We show A ∼= C.

Let j 6∈ span{1A}, then {1A, j} is a basis of A.

WLOG, we can assume j2 = a.1A where a ∈ R.

Clearly a < 0.

WLOG j2 = −1A

A finite dimensional commutative division algebra, not necessarily with an
identity has dimension atmost 2. There do exists commutative division
algebras without identity. E.g. C with z .w = ¯z .w
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