Some classical applications of Homology groups

Ajay Prajapati 17817063

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur

End-Semester Exam presentation

- A theorem about homology of complements of embedded spheres and disks in a sphere.
- Jordan Curve theorem and its generalization
- Invariance of Domain
- A theorem about manifolds
- \bullet A theorem about division algebras over $\mathbb R$

First we compute homology groups of complements of embedded spheres and disks in a sphere.

Theorem

- For an embedding $h: D^k \longrightarrow S^n$, $\tilde{H}_i(S^n h(D^k)) = 0$ for all *i*.
- **2** For an embedding $h: S^k \longrightarrow S^n$ with k < n, then

$$ilde{H}_i(S^n - h(S^k)) \cong egin{cases} \mathbb{Z} & ext{for } i = n - k - 1, \ 0 & ext{otherwise} \end{cases}$$

First we compute homology groups of complements of embedded spheres and disks in a sphere.

Theorem

- For an embedding $h: D^k \longrightarrow S^n$, $\tilde{H}_i(S^n h(D^k)) = 0$ for all *i*.
- **2** For an embedding $h: S^k \longrightarrow S^n$ with k < n, then

$$ilde{H}_i(S^n-h(S^k))\congegin{cases}\mathbb{Z}& ext{ for }i=n-k-1\0& ext{ otherwise}\end{cases}$$

Jordan Curve Theorem

Let C be a simple closed curve in S^2 . Then C separates S^2 into two components.

First we compute homology groups of complements of embedded spheres and disks in a sphere.

Theorem

9 For an embedding
$$h: D^k \longrightarrow S^n$$
, $\tilde{H}_i(S^n - h(D^k)) = 0$ for all *i*.

2 For an embedding $h: S^k \longrightarrow S^n$ with k < n, then

$$ilde{H}_i(S^n-h(S^k))\congegin{cases}\mathbb{Z}& ext{for }i=n-k-1\0& ext{otherwise}\end{cases}$$

Jordan Curve Theorem

Let C be a simple closed curve in S^2 . Then C separates S^2 into two components.

(**Brouwer**) Above theorem generalises the Jordan Curve Theorem: A subspace of S^n homeomorphic to S^{n-1} seperates in into two components and these components has same homology groups as points.

For an embedding
$$h: D^k \longrightarrow S^n$$
, $\tilde{H}_i(S^n - h(D^k)) = 0$ for all *i*.

Proof(a)

We use induction on k.

- Base case: For k = 0, $S^n h(D^0)$ is homeomorphic to \mathbb{R}^n .
- For inductive hypothesis, we replace D^k by cube I^k . Let $A = S^n h(I^{k-1} \times [0, 1/2])$ and $B = S^n h(I^{k-1} \times [1/2, 1])$, so $A \cap B = S^n h(I^k)$ and $X = \mathring{A} \cup \mathring{B} = A \cup B = S^n h(I^{k-1} \times \{1/2\})$

For an embedding
$$h: D^k \longrightarrow S^n$$
, $\tilde{H}_i(S^n - h(D^k)) = 0$ for all *i*.

Proof(a)

We use induction on k.

- Base case: For k = 0, $S^n h(D^0)$ is homeomorphic to \mathbb{R}^n .
- For inductive hypothesis, we replace D^k by cube I^k . Let $A = S^n h(I^{k-1} \times [0, 1/2])$ and $B = S^n h(I^{k-1} \times [1/2, 1])$, so $A \cap B = S^n h(I^k)$ and $X = \mathring{A} \cup \mathring{B} = A \cup B = S^n h(I^{k-1} \times \{1/2\})$
- Induction Hypothesis: $\tilde{H}_i(A \cup B) = 0$ for all *i*
- Inductive Step: Mayer-Vietoris sequence gives isomorphisms $\Phi_i : \tilde{H}_i(S^n h(I^k)) \longrightarrow \tilde{H}_i(A) \oplus \tilde{H}_i(B)$ for all *i*.
- Modulo signs, the two components of Φ_i are induced by the inclusions Sⁿ − h(I^k) → A and Sⁿ − h(I^k) → B.

Theorem

For an embedding
$$h: D^k \longrightarrow S^n$$
, $\tilde{H}_i(S^n - h(D^k)) = 0$ for all *i*.

Proof

 Suppose ∃ an *i*-dimensional cycle α of Sⁿ − h(I^k) which is not boundary in Sⁿ-h(I^k). Then α is not a boundary in atleast of A or B.

Theorem

For an embedding
$$h: D^k \longrightarrow S^n$$
, $\tilde{H}_i(S^n - h(D^k)) = 0$ for all *i*.

- Suppose ∃ an *i*-dimensional cycle α of Sⁿ − h(I^k) which is not boundary in Sⁿ-h(I^k). Then α is not a boundary in atleast of A or B.
- By iteration, produce a nested sequence of of closed intervals
 *I*₁ ⊃ *I*₂... in the last coordinate of *I^k* shrinking down to a point *p* ∈ *I* such that α is not a boundary in *Sⁿ* − *h*(*I^{k-1}* × *I_m*) for any *m*.

Theorem

For an embedding
$$h: D^k \longrightarrow S^n$$
, $\tilde{H}_i(S^n - h(D^k)) = 0$ for all *i*.

- Suppose ∃ an *i*-dimensional cycle α of Sⁿ h(I^k) which is not boundary in Sⁿ-h(I^k). Then α is not a boundary in atleast of A or B.
- By iteration, produce a nested sequence of of closed intervals
 *I*₁ ⊃ *I*₂... in the last coordinate of *I^k* shrinking down to a point *p* ∈ *I* such that α is not a boundary in *Sⁿ* − *h*(*I^{k-1}* × *I_m*) for any *m*.
- But α is the boundary of a chain β in $S^n h(I^{k-1} \times \{p\})$.
- β is finite linear combination of singular simplicies with compact image in Sⁿ − h(I^{k−1} × {p}).

Theorem

For an embedding
$$h: D^k \longrightarrow S^n$$
, $\tilde{H}_i(S^n - h(D^k)) = 0$ for all *i*.

Proof

- Suppose ∃ an *i*-dimensional cycle α of Sⁿ h(I^k) which is not boundary in Sⁿ-h(I^k). Then α is not a boundary in atleast of A or B.
- By iteration, produce a nested sequence of of closed intervals
 *I*₁ ⊃ *I*₂... in the last coordinate of *I^k* shrinking down to a point *p* ∈ *I* such that α is not a boundary in *Sⁿ* − *h*(*I^{k-1}* × *I_m*) for any *m*.
- But α is the boundary of a chain β in $S^n h(I^{k-1} \times \{p\})$.
- β is finite linear combination of singular simplicies with compact image in Sⁿ - h(I^{k-1} × {p}).

Since Sⁿ − h(I^{k−1} × I_m) forms increasing open cover of Sⁿ − h(I^{k−1} × {p}), by compactness, β is a chain of Sⁿ − h(I^{k−1} × I_m) for some m.

Ajay Prajapati

Proof of (b)

Theorem

For an embedding $h: S^k \longrightarrow S^n$ with k < n, then

$$ilde{H}_i(S^n-h(S^k))\congegin{cases}\mathbb{Z}& ext{for }i=n-k-1,\0& ext{otherwise}\end{cases}$$

Proof

• When
$$k = 0$$
, then $S^n - h(S^0)$ is homotopic to S^{n-1} .

• Let $A = S^n - h(D^k_+)$ and $B = S^n - (D^k_-)$. $A \cap B = S^n - h(S^k)$ and $X = \mathring{A} \cup \mathring{B} = A \cup B = S^n - h(S^{k-1})$. By (a), we have $\widetilde{H}_i(A) \cong \widetilde{H}_i(B) \cong 0$.

• Apply Mayer-Vietoris with A and B, we have $\tilde{H}_i(S^n - h(S^k)) \cong \tilde{H}_{i+1}(S^n - h(S^{k-1}))$ for all *i*.

A D N A B N A B N A B N

 Applying previous proof to an embedding h : Sⁿ → Sⁿ, the Mayer-Vietoris sequence ends with

$$ilde{H}_0(A)\oplus ilde{H}_0(B)\longrightarrow ilde{H}_0(S^n-h(S^{n-1}))\longrightarrow 0$$

• So $\tilde{H}_0(S^n - h(S^{n-1})) = 0$ which appears to contradict the fact that $S^n - h(S^{n-1})$ has two path components.

.

 Applying previous proof to an embedding h : Sⁿ → Sⁿ, the Mayer-Vietoris sequence ends with

$$ilde{H}_0(A)\oplus ilde{H}_0(B)\longrightarrow ilde{H}_0(S^n-h(S^{n-1}))\longrightarrow 0$$

- So $\tilde{H}_0(S^n h(S^{n-1})) = 0$ which appears to contradict the fact that $S^n h(S^{n-1})$ has two path components.
- unless h is surjective A ∩ B = Ø and the Mayer-Vietoris sequence ends with H
 ₋₁(Ø) which is Z.

 Applying previous proof to an embedding h : Sⁿ → Sⁿ, the Mayer-Vietoris sequence ends with

$$ilde{H}_0(A)\oplus ilde{H}_0(B)\longrightarrow ilde{H}_0(S^n-h(S^{n-1}))\longrightarrow 0$$

- So $\tilde{H}_0(S^n h(S^{n-1})) = 0$ which appears to contradict the fact that $S^n h(S^{n-1})$ has two path components.
- unless h is surjective A ∩ B = Ø and the Mayer-Vietoris sequence ends with H
 ₋₁(Ø) which is Z.
- So S^n cannot be embedded in \mathbb{R}^n

• Applying previous proof to an embedding $h: S^n \longrightarrow S^n$, the Mayer-Vietoris sequence ends with

$$ilde{H}_0(A)\oplus ilde{H}_0(B)\longrightarrow ilde{H}_0(S^n-h(S^{n-1}))\longrightarrow 0$$

- So $\tilde{H}_0(S^n h(S^{n-1})) = 0$ which appears to contradict the fact that $S^n h(S^{n-1})$ has two path components.
- unless h is surjective A ∩ B = Ø and the Mayer-Vietoris sequence ends with H
 ₋₁(Ø) which is Z.
- So S^n cannot be embedded in \mathbb{R}^n
- More generally, there is no continuous injection $\mathbb{R}^m \longrightarrow \mathbb{R}^n$ for m > n.

Alexander Horned Sphere

Jordan Schoenflies Theorem

Let C be a simple closed curve, then there is a homeomorphism $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ s.t. f(C) is the unit circle in the plane.

This theorem is not true for \mathbb{R}^3 and a counterexample is provided by **Alexander Horned Sphere**.

Jordan Schoenflies Theorem

Let C be a simple closed curve, then there is a homeomorphism $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ s.t. f(C) is the unit circle in the plane.

This theorem is not true for \mathbb{R}^3 and a counterexample is provided by Alexander Horned Sphere.

A subspace of S of \mathbb{R}^3 homeomorphic to S^2 such that unbounded component of $\mathbb{R}^3 - S$ is not simply connected.

Construction

- B_0 -a ball, X_0 -a solid torus obtained from B_0 by attaching $I \times D^2$ along $\partial I \times D^2$.
- To form $X_1 \subset X_0$, delete part of short handle so that what remains is a pair of linked handles attached to ball B_1 which is union of B_0 and two horns.
- X_n is a ball with 2^n handles attached and B_n is obtained from B_{n-1} by attaching 2^n horns. Algebraic Topology 1 May 2021 8/18

Alexander Horned Sphere

Ajay Prajapati

Properties

- It can be proved that there is a map $f: B_0 \longrightarrow \mathbb{R}^3$ whose image is the previous figure.
- By compactness, f is homeomorphism onto its image, $B = f(B_0)$ and $S = f(\partial B_0)$ is the Alexander horned sphere.

Computation of $\pi_1(\mathbb{R}^3 - B)$

- $B = \cap_n X_n$, so $\mathbb{R}^3 B = \bigcup_n (R^3 X_n)$. Let $Y_n = R^3 X_n$.
- It can be shown that $\pi_1(Y_n)$ is a free group on 2^n generators and $Y_n \longrightarrow Y_{n+1}$ induces an injection $\pi_1(Y_n) \longrightarrow \pi_1(Y_{n+1})$.
- Suppose {α_iⁿ} are generators of π₁(Y_n). Then α_iⁿ → [α_{2i+1}ⁿ⁺¹, α_{2i+2}ⁿ⁺¹]. So the map π₁(Y_n) → π₁(Y_{n+1}) is an injection F_{2ⁿ} → F_{2ⁿ⁺¹}.
- $\pi_1(\mathbb{R}^3 B) \cong \bigcup_n \pi_1(Y_n)$ by compactness argument: Each loop in $\mathbb{R}^3 B$ lies in some Y_n .
- Clearly, $\pi_1(\mathbb{R}^3 B)$ has trivial abelianization. In particular, it is a non-free group which is union of increasing sequence of free groups.

Let $U \subset \mathbb{R}^n$ be a open set, and $h: U \longrightarrow \mathbb{R}^n$ is an embedding, then the image h(U) is an open set in \mathbb{R}^n .

Proof

• Viewing S^n as the one-point compactification of \mathbb{R}^n , an equivalent statement is that h(U) is open in S^n .

Let $U \subset \mathbb{R}^n$ be a open set, and $h: U \longrightarrow \mathbb{R}^n$ is an embedding, then the image h(U) is an open set in \mathbb{R}^n .

- Viewing S^n as the one-point compactification of \mathbb{R}^n , an equivalent statement is that h(U) is open in S^n .
- Each x ∈ U is the center point of some disk Dⁿ ⊂ U. It suffices to prove that h(Dⁿ − ∂Dⁿ) is open in Sⁿ.

Let $U \subset \mathbb{R}^n$ be a open set, and $h: U \longrightarrow \mathbb{R}^n$ is an embedding, then the image h(U) is an open set in \mathbb{R}^n .

- Viewing S^n as the one-point compactification of \mathbb{R}^n , an equivalent statement is that h(U) is open in S^n .
- Each x ∈ U is the center point of some disk Dⁿ ⊂ U. It suffices to prove that h(Dⁿ − ∂Dⁿ) is open in Sⁿ.
- Restriction of h to D^n and ∂D^n are again embeddings. Hence $S^n h(\partial D^n)$ has two path-components.

Let $U \subset \mathbb{R}^n$ be a open set, and $h: U \longrightarrow \mathbb{R}^n$ is an embedding, then the image h(U) is an open set in \mathbb{R}^n .

- Viewing S^n as the one-point compactification of \mathbb{R}^n , an equivalent statement is that h(U) is open in S^n .
- Each x ∈ U is the center point of some disk Dⁿ ⊂ U. It suffices to prove that h(Dⁿ − ∂Dⁿ) is open in Sⁿ.
- Restriction of h to D^n and ∂D^n are again embeddings. Hence $S^n h(\partial D^n)$ has two path-components.
- These path components are h(Dⁿ − ∂Dⁿ) and Sⁿ − h(Dⁿ) (path connected by proposition).

Let $U \subset \mathbb{R}^n$ be a open set, and $h: U \longrightarrow \mathbb{R}^n$ is an embedding, then the image h(U) is an open set in \mathbb{R}^n .

- Viewing S^n as the one-point compactification of \mathbb{R}^n , an equivalent statement is that h(U) is open in S^n .
- Each x ∈ U is the center point of some disk Dⁿ ⊂ U. It suffices to prove that h(Dⁿ − ∂Dⁿ) is open in Sⁿ.
- Restriction of h to D^n and ∂D^n are again embeddings. Hence $S^n h(\partial D^n)$ has two path-components.
- These path components are h(Dⁿ − ∂Dⁿ) and Sⁿ − h(Dⁿ) (path connected by proposition).
- Path components of $S^n h(\partial D^n)$ are same as its components.

Let $U \subset \mathbb{R}^n$ be a open set, and $h: U \longrightarrow \mathbb{R}^n$ is an embedding, then the image h(U) is an open set in \mathbb{R}^n .

- Viewing S^n as the one-point compactification of \mathbb{R}^n , an equivalent statement is that h(U) is open in S^n .
- Each x ∈ U is the center point of some disk Dⁿ ⊂ U. It suffices to prove that h(Dⁿ − ∂Dⁿ) is open in Sⁿ.
- Restriction of h to D^n and ∂D^n are again embeddings. Hence $S^n h(\partial D^n)$ has two path-components.
- These path components are h(Dⁿ − ∂Dⁿ) and Sⁿ − h(Dⁿ) (path connected by proposition).
- Path components of $S^n h(\partial D^n)$ are same as its components.
- The components of a space with finitely many components are open.
- $h(D^n \partial D^n)$ is open in $S^n h(\partial D^n)$ and hence also in S^n .

Definition

M is called manifold if *M* is Hausdorff and is "locally Euclidean of dimension *n*" i.e. for each $x \in M$, \exists nbhd *U* of *x* homeomorphic to an open subset of \mathbb{R}^n .

Equivalent definitions of a manifold

U can be taken to be homeomorphic to an open ball of \mathbb{R}^n or to \mathbb{R}^n itself.

Let M be a compact n-manifold and N be a connected n-manifold, then every injective map from M in N is homeomorphism.

- Suppose $h: M \longrightarrow N$ be an injective map. Clearly h is an embedding.
- Therefore suffices to prove that h is surjective. Since N is connected, suffices to prove that h(M) is is both open and closed.
- h(M) is closed.

Let M be a compact n-manifold and N be a connected n-manifold, then every injective map from M in N is homeomorphism.

- Suppose $h: M \longrightarrow N$ be an injective map. Clearly h is an embedding.
- Therefore suffices to prove that h is surjective. Since N is connected, suffices to prove that h(M) is is both open and closed.
- h(M) is closed.
- Use invariance of domain.

Algebra

An algebra structure on \mathbb{R}^n is a bilinear map $\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$.

Commutativity, associativity and identity element are not assumed.

Algebra

An algebra structure on \mathbb{R}^n is a bilinear map $\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$.

Commutativity, associativity and identity element are not assumed.

Division Algebra

An algebra is a **division algebra** if the equations ax = b and xa = b has solution whenever $a \neq 0$.

 $\mathbb{R},\mathbb{C},\mathbb{H},\mathbb{O}$ are examples.

Algebra

An algebra structure on \mathbb{R}^n is a bilinear map $\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$.

Commutativity, associativity and identity element are not assumed.

Division Algebra

An algebra is a **division algebra** if the equations ax = b and xa = b has solution whenever $a \neq 0$.

 $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ are examples.

Frobenius Theorem (1877)

Upto isomorphism \mathbb{R} , \mathbb{C} and \mathbb{H} are the only finite dimensional associative division algebras over \mathbb{R} with an identity element.

< □ > < 同 > < 回 > < 回 > < 回 >

If \mathbb{R}^n has a structure of division algebra over \mathbb{R} , then $n = 2^m$.

If \mathbb{R}^n has a structure of division algebra over \mathbb{R} , then $n = 2^m$.

Milnor, Bott and Kervaire (1958)

Any finite dimensional division algebra over ${\mathbb R}$ must have dimension 1, 2, 4 or 8.

If \mathbb{R}^n has a structure of division algebra over \mathbb{R} , then $n = 2^m$.

Milnor, Bott and Kervaire (1958)

Any finite dimensional division algebra over $\mathbb R$ must have dimension 1, 2, 4 or 8.

Theorem

 $\mathbb R$ and $\mathbb C$ are the only finite dimensional division algebras over $\mathbb R$ which are commutative and have an identity.

Proof

First assume that \mathbb{R}^n has commutative.

- Define a map $f: S^{n-1} \longrightarrow S^{n-1}$, $x \longmapsto x^2/|x^2|$.
- f is continuous since the multiplication map and the norm map are continuous(?)

- < ≣ ≻ <

Image: Image:

Proof

First assume that \mathbb{R}^n has commutative.

- Define a map $f: S^{n-1} \longrightarrow S^{n-1}$, $x \longmapsto x^2/|x^2|$.
- *f* is continuous since the multiplication map and the norm map are continuous(?)
- f(x) = f(-x) so we have $\overline{f} : \mathbb{RP}^{n-1} \longrightarrow S^{n-1}$ which is injective: If f(x) = f(y), then $x^2 = \alpha^2 y^2$.

$$x^2 - \alpha^2 y^2 = 0 \implies (x + \alpha y)(x - \alpha y) = 0 \implies x = \pm \alpha y$$

• □ ▶ • 4□ ▶ • Ξ ▶ •

First assume that \mathbb{R}^n has commutative.

- Define a map $f: S^{n-1} \longrightarrow S^{n-1}$, $x \longmapsto x^2/|x^2|$.
- *f* is continuous since the multiplication map and the norm map are continuous(?)
- f(x) = f(-x) so we have $\overline{f} : \mathbb{RP}^{n-1} \longrightarrow S^{n-1}$ which is injective: If f(x) = f(y), then $x^2 = \alpha^2 y^2$.

$$x^2 - \alpha^2 y^2 = 0 \implies (x + \alpha y)(x - \alpha y) = 0 \implies x = \pm \alpha y$$

Since ℝPⁿ⁻¹ and Sⁿ⁻¹ are compact Hausdorff, *f* is an embedding.
If n ≠ 1, then *f* is surjective. Thus ℝPⁿ⁻¹ ≅ Sⁿ⁻¹ ⇒ n = 2

< □ > < 同 > < 回 > < 回 > < 回 >

Suppose A is a 2-dimensional commutative division algebra with identity 1_A . We show $A \cong \mathbb{C}$.

- Let $j \notin \operatorname{span}\{1_A\}$, then $\{1_A, j\}$ is a basis of A.
- WLOG, we can assume $j^2 = a.1_A$ where $a \in \mathbb{R}$.

Suppose A is a 2-dimensional commutative division algebra with identity 1_A . We show $A \cong \mathbb{C}$.

- Let $j \notin \operatorname{span}\{1_A\}$, then $\{1_A, j\}$ is a basis of A.
- WLOG, we can assume $j^2 = a.1_A$ where $a \in \mathbb{R}$.
- Clearly *a* < 0.
- WLOG $j^2 = -1_A$

Suppose A is a 2-dimensional commutative division algebra with identity 1_A . We show $A \cong \mathbb{C}$.

- Let $j \notin \operatorname{span}\{1_A\}$, then $\{1_A, j\}$ is a basis of A.
- WLOG, we can assume $j^2 = a.1_A$ where $a \in \mathbb{R}$.
- Clearly *a* < 0.
- WLOG $j^2 = -1_A$

A finite dimensional commutative division algebra, not necessarily with an identity has dimension atmost 2. There do exists commutative division algebras without identity. E.g. \mathbb{C} with $z.w = z.\overline{w}$

- A. Hatcher.Algebraic Topology. Cambridge University Press, 2002
- J. Munkres. Topology. Pearson, 2014