Some classical applications of Homology groups

Ajay Prajapati
17817063

Dept. of Mathematics and Statistics
Indian Institute of Technology, Kanpur

End-Semester Exam presentation

Outline of today's talk

- A theorem about homology of complements of embedded spheres and disks in a sphere.
- Jordan Curve theorem and its generalization
- Invariance of Domain
- A theorem about manifolds
- A theorem about division algebras over \mathbb{R}

First we compute homology groups of complements of embedded spheres and disks in a sphere.

Theorem

(1) For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.
(2) For an embedding $h: S^{k} \longrightarrow S^{n}$ with $k<n$, then

$$
\tilde{H}_{i}\left(S^{n}-h\left(S^{k}\right)\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=n-k-1 \\ 0 & \text { otherwise }\end{cases}
$$

First we compute homology groups of complements of embedded spheres and disks in a sphere.

Theorem

(1) For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.
(2) For an embedding $h: S^{k} \longrightarrow S^{n}$ with $k<n$, then

$$
\tilde{H}_{i}\left(S^{n}-h\left(S^{k}\right)\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=n-k-1 \\ 0 & \text { otherwise }\end{cases}
$$

Jordan Curve Theorem

Let C be a simple closed curve in S^{2}. Then C seperates S^{2} into two components.

First we compute homology groups of complements of embedded spheres and disks in a sphere.

Theorem

(1) For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.
(2) For an embedding $h: S^{k} \longrightarrow S^{n}$ with $k<n$, then

$$
\tilde{H}_{i}\left(S^{n}-h\left(S^{k}\right)\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=n-k-1 \\ 0 & \text { otherwise }\end{cases}
$$

Jordan Curve Theorem

Let C be a simple closed curve in S^{2}. Then C seperates S^{2} into two components.
(Brouwer) Above theorem generalises the Jordan Curve Theorem: A subspace of S^{n} homeomorphic to S^{n-1} seperates in into two components and these components has same homology groups as points.

Proof

Theorem

For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.

Proof(a)

We use induction on k.

- Base case: For $k=0, S^{n}-h\left(D^{0}\right)$ is homeomorphic to \mathbb{R}^{n}.
- For inductive hypothesis, we replace D^{k} by cube I^{k}. Let

$$
\begin{aligned}
& A=S^{n}-h\left(I^{k-1} \times[0,1 / 2]\right) \text { and } B=S^{n}-h\left(I^{k-1} \times[1 / 2,1]\right), \text { so } \\
& A \cap B=S^{n}-h\left(I^{k}\right) \text { and } X=\AA \cup B=A \cup B=S^{n}-h\left(I^{k-1} \times\{1 / 2\}\right)
\end{aligned}
$$

Proof

Theorem

For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.

Proof(a)

We use induction on k.

- Base case: For $k=0, S^{n}-h\left(D^{0}\right)$ is homeomorphic to \mathbb{R}^{n}.
- For inductive hypothesis, we replace D^{k} by cube I^{k}. Let

$$
\begin{aligned}
& A=S^{n}-h\left(I^{k-1} \times[0,1 / 2]\right) \text { and } B=S^{n}-h\left(I^{k-1} \times[1 / 2,1]\right), \text { so } \\
& A \cap B=S^{n}-h\left(I^{k}\right) \text { and } X=A \cup B=A \cup B=S^{n}-h\left(I^{k-1} \times\{1 / 2\}\right)
\end{aligned}
$$

- Induction Hypothesis: $\tilde{H}_{i}(A \cup B)=0$ for all i
- Inductive Step: Mayer-Vietoris sequence gives isomorphisms $\Phi_{i}: \tilde{H}_{i}\left(S^{n}-h\left(I^{k}\right)\right) \longrightarrow \tilde{H}_{i}(A) \oplus \tilde{H}_{i}(B)$ for all i.
- Modulo signs, the two components of Φ_{i} are induced by the inclusions $S^{n}-h\left(I^{k}\right) \hookrightarrow A$ and $S^{n}-h\left(I^{k}\right) \hookrightarrow B$.

Proof continued

Theorem

For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.

Proof

- Suppose \exists an i-dimensional cycle α of $S^{n}-h\left(I^{k}\right)$ which is not boundary in $S^{n}-h\left(I^{k}\right)$. Then α is not a boundary in atleast of A or B.

Proof continued

Theorem

For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.

Proof

- Suppose \exists an i-dimensional cycle α of $S^{n}-h\left(I^{k}\right)$ which is not boundary in $S^{n}-h\left(I^{k}\right)$. Then α is not a boundary in atleast of A or B.
- By iteration, produce a nested sequence of of closed intervals $I_{1} \supset I_{2} \ldots$ in the last coordinate of I^{k} shrinking down to a point $p \in I$ such that α is not a boundary in $S^{n}-h\left(I^{k-1} \times I_{m}\right)$ for any m.

Proof continued

Theorem

For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.

Proof

- Suppose \exists an i-dimensional cycle α of $S^{n}-h\left(I^{k}\right)$ which is not boundary in $S^{n}-h\left(I^{k}\right)$. Then α is not a boundary in atleast of A or B.
- By iteration, produce a nested sequence of of closed intervals $I_{1} \supset I_{2} \ldots$ in the last coordinate of I^{k} shrinking down to a point $p \in I$ such that α is not a boundary in $S^{n}-h\left(I^{k-1} \times I_{m}\right)$ for any m.
- But α is the boundary of a chain β in $S^{n}-h\left(I^{k-1} \times\{p\}\right)$.
- β is finite linear combination of singular simplicies with compact image in $S^{n}-h\left(I^{k-1} \times\{p\}\right)$.

Proof continued

Theorem

For an embedding $h: D^{k} \longrightarrow S^{n}, \tilde{H}_{i}\left(S^{n}-h\left(D^{k}\right)\right)=0$ for all i.

Proof

- Suppose \exists an i-dimensional cycle α of $S^{n}-h\left(I^{k}\right)$ which is not boundary in $S^{n}-h\left(I^{k}\right)$. Then α is not a boundary in atleast of A or B.
- By iteration, produce a nested sequence of of closed intervals $I_{1} \supset I_{2} \ldots$ in the last coordinate of I^{k} shrinking down to a point $p \in I$ such that α is not a boundary in $S^{n}-h\left(I^{k-1} \times I_{m}\right)$ for any m.
- But α is the boundary of a chain β in $S^{n}-h\left(I^{k-1} \times\{p\}\right)$.
- β is finite linear combination of singular simplicies with compact image in $S^{n}-h\left(I^{k-1} \times\{p\}\right)$.
- Since $S^{n}-h\left(I^{k-1} \times I_{m}\right)$ forms increasing open cover of $S^{n}-h\left(I^{k-1} \times\{p\}\right)$, by compactness, β is a chain of $S^{n}-h\left(I^{k-1} \times I_{m}\right)$ for some m.

Proof of (b)

Theorem

For an embedding $h: S^{k} \longrightarrow S^{n}$ with $k<n$, then

$$
\tilde{H}_{i}\left(S^{n}-h\left(S^{k}\right)\right) \cong \begin{cases}\mathbb{Z} & \text { for } i=n-k-1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof

- When $k=0$, then $S^{n}-h\left(S^{0}\right)$ is homotopic to S^{n-1}.
- Let $A=S^{n}-h\left(D_{+}^{k}\right)$ and $B=S^{n}-\left(D_{-}^{k}\right)$. $A \cap B=S^{n}-h\left(S^{k}\right)$ and $X=\AA \cup B \circ=A \cup B=S^{n}-h\left(S^{k-1}\right)$. By (a), we have $\tilde{H}_{i}(A) \cong \tilde{H}_{i}(B) \cong 0$.
- Apply Mayer-Vietoris with A and B, we have $\tilde{H}_{i}\left(S^{n}-h\left(S^{k}\right)\right) \cong \tilde{H}_{i+1}\left(S^{n}-h\left(S^{k-1}\right)\right)$ for all i.

Consequences

- Applying previous proof to an embedding $h: S^{n} \longrightarrow S^{n}$, the Mayer-Vietoris sequence ends with

$$
\tilde{H}_{0}(A) \oplus \tilde{H}_{0}(B) \longrightarrow \tilde{H}_{0}\left(S^{n}-h\left(S^{n-1}\right)\right) \longrightarrow 0
$$

- So $\tilde{H}_{0}\left(S^{n}-h\left(S^{n-1}\right)\right)=0$ which appears to contradict the fact that $S^{n}-h\left(S^{n-1}\right)$ has two path components.

Consequences

- Applying previous proof to an embedding $h: S^{n} \longrightarrow S^{n}$, the Mayer-Vietoris sequence ends with

$$
\tilde{H}_{0}(A) \oplus \tilde{H}_{0}(B) \longrightarrow \tilde{H}_{0}\left(S^{n}-h\left(S^{n-1}\right)\right) \longrightarrow 0
$$

- So $\tilde{H}_{0}\left(S^{n}-h\left(S^{n-1}\right)\right)=0$ which appears to contradict the fact that $S^{n}-h\left(S^{n-1}\right)$ has two path components.
- unless h is surjective $A \cap B=\varnothing$ and the Mayer-Vietoris sequence ends with $\tilde{H}_{-1}(\varnothing)$ which is \mathbb{Z}.

Consequences

- Applying previous proof to an embedding $h: S^{n} \longrightarrow S^{n}$, the Mayer-Vietoris sequence ends with

$$
\tilde{H}_{0}(A) \oplus \tilde{H}_{0}(B) \longrightarrow \tilde{H}_{0}\left(S^{n}-h\left(S^{n-1}\right)\right) \longrightarrow 0
$$

- So $\tilde{H}_{0}\left(S^{n}-h\left(S^{n-1}\right)\right)=0$ which appears to contradict the fact that $S^{n}-h\left(S^{n-1}\right)$ has two path components.
- unless h is surjective $A \cap B=\varnothing$ and the Mayer-Vietoris sequence ends with $\tilde{H}_{-1}(\varnothing)$ which is \mathbb{Z}.
- So S^{n} cannot be embedded in \mathbb{R}^{n}

Consequences

- Applying previous proof to an embedding $h: S^{n} \longrightarrow S^{n}$, the Mayer-Vietoris sequence ends with

$$
\tilde{H}_{0}(A) \oplus \tilde{H}_{0}(B) \longrightarrow \tilde{H}_{0}\left(S^{n}-h\left(S^{n-1}\right)\right) \longrightarrow 0
$$

- So $\tilde{H}_{0}\left(S^{n}-h\left(S^{n-1}\right)\right)=0$ which appears to contradict the fact that $S^{n}-h\left(S^{n-1}\right)$ has two path components.
- unless h is surjective $A \cap B=\varnothing$ and the Mayer-Vietoris sequence ends with $\tilde{H}_{-1}(\varnothing)$ which is \mathbb{Z}.
- So S^{n} cannot be embedded in \mathbb{R}^{n}
- More generally, there is no continuous injection $\mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ for $m>n$.

Alexander Horned Sphere

Jordan Schoenflies Theorem

Let C be a simple closed curve, then there is a homeomorphism $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ s.t. $f(C)$ is the unit circle in the plane.

This theorem is not true for \mathbb{R}^{3} and a counterexample is provided by Alexander Horned Sphere.

Alexander Horned Sphere

Jordan Schoenflies Theorem

Let C be a simple closed curve, then there is a homeomorphism $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ s.t. $f(C)$ is the unit circle in the plane.

This theorem is not true for \mathbb{R}^{3} and a counterexample is provided by Alexander Horned Sphere.
A subspace of S of \mathbb{R}^{3} homeomorphic to S^{2} such that unbounded component of $\mathbb{R}^{3}-S$ is not simply connected.

Construction

- B_{0}-a ball, X_{0}-a solid torus obtained from B_{0} by attaching $I \times D^{2}$ along $\partial I \times D^{2}$.
- To form $X_{1} \subset X_{0}$, delete part of short handle so that what remains is a pair of linked handles attached to ball B_{1} which is union of B_{0} and two horns.
- X_{n} is a ball with 2^{n} handles attached and B_{n} is obtained from B_{n-1} bv attaching 2^{n} horns.

Alexander Horned Sphere

Properties

- It can be proved that there is a map $f: B_{0} \longrightarrow \mathbb{R}^{3}$ whose image is the previous figure.
- By compactness, f is homeomorphism onto its image, $B=f\left(B_{0}\right)$ and $S=f\left(\partial B_{0}\right)$ is the Alexander horned sphere.

Computation of $\pi_{1}\left(\mathbb{R}^{3}-B\right)$

- $B=\cap_{n} X_{n}$, so $\mathbb{R}^{3}-B=\cup_{n}\left(R^{3}-X_{n}\right)$. Let $Y_{n}=R^{3}-X_{n}$.
- It can be shown that $\pi_{1}\left(Y_{n}\right)$ is a free group on 2^{n} generators and $Y_{n} \hookrightarrow Y_{n+1}$ induces an injection $\pi_{1}\left(Y_{n}\right) \longrightarrow \pi_{1}\left(Y_{n+1}\right)$.
- Suppose $\left\{\alpha_{i}^{n}\right\}$ are generators of $\pi_{1}\left(Y_{n}\right)$. Then $\alpha_{i}^{n} \longmapsto\left[\alpha_{2 i+1}^{n+1}, \alpha_{2 i+2}^{n+1}\right]$. So the map $\pi_{1}\left(Y_{n}\right) \longrightarrow \pi_{1}\left(Y_{n+1}\right)$ is an injection $F_{2^{n}} \longrightarrow F_{2^{n+1}}$.
- $\pi_{1}\left(\mathbb{R}^{3}-B\right) \cong \cup_{n} \pi_{1}\left(Y_{n}\right)$ by compactness argument: Each loop in $\mathbb{R}^{3}-B$ lies in some Y_{n}.
- Clearly, $\pi_{1}\left(\mathbb{R}^{3}-B\right)$ has trivial abelianization. In particular, it is a non-free group which is union of increasing sequence of free groups.

Theorem(Invariance of Domain) (Brouwer)

Let $U \subset \mathbb{R}^{n}$ be a open set, and $h: U \longrightarrow \mathbb{R}^{n}$ is an embedding, then the image $h(U)$ is an open set in \mathbb{R}^{n}.

Proof

- Viewing S^{n} as the one-point compactification of \mathbb{R}^{n}, an equivalent statement is that $h(U)$ is open in S^{n}.

Theorem(Invariance of Domain) (Brouwer)

Let $U \subset \mathbb{R}^{n}$ be a open set, and $h: U \longrightarrow \mathbb{R}^{n}$ is an embedding, then the image $h(U)$ is an open set in \mathbb{R}^{n}.

Proof

- Viewing S^{n} as the one-point compactification of \mathbb{R}^{n}, an equivalent statement is that $h(U)$ is open in S^{n}.
- Each $x \in U$ is the center point of some disk $D^{n} \subset U$. It suffices to prove that $h\left(D^{n}-\partial D^{n}\right)$ is open in S^{n}.

Theorem(Invariance of Domain) (Brouwer)

Let $U \subset \mathbb{R}^{n}$ be a open set, and $h: U \longrightarrow \mathbb{R}^{n}$ is an embedding, then the image $h(U)$ is an open set in \mathbb{R}^{n}.

Proof

- Viewing S^{n} as the one-point compactification of \mathbb{R}^{n}, an equivalent statement is that $h(U)$ is open in S^{n}.
- Each $x \in U$ is the center point of some disk $D^{n} \subset U$. It suffices to prove that $h\left(D^{n}-\partial D^{n}\right)$ is open in S^{n}.
- Restriction of h to D^{n} and ∂D^{n} are again embeddings. Hence $S^{n}-h\left(\partial D^{n}\right)$ has two path-components.

Theorem(Invariance of Domain) (Brouwer)

Let $U \subset \mathbb{R}^{n}$ be a open set, and $h: U \longrightarrow \mathbb{R}^{n}$ is an embedding, then the image $h(U)$ is an open set in \mathbb{R}^{n}.

Proof

- Viewing S^{n} as the one-point compactification of \mathbb{R}^{n}, an equivalent statement is that $h(U)$ is open in S^{n}.
- Each $x \in U$ is the center point of some disk $D^{n} \subset U$. It suffices to prove that $h\left(D^{n}-\partial D^{n}\right)$ is open in S^{n}.
- Restriction of h to D^{n} and ∂D^{n} are again embeddings. Hence $S^{n}-h\left(\partial D^{n}\right)$ has two path-components.
- These path components are $h\left(D^{n}-\partial D^{n}\right)$ and $S^{n}-h\left(D^{n}\right)$ (path connected by proposition).

Theorem(Invariance of Domain) (Brouwer)

Let $U \subset \mathbb{R}^{n}$ be a open set, and $h: U \longrightarrow \mathbb{R}^{n}$ is an embedding, then the image $h(U)$ is an open set in \mathbb{R}^{n}.

Proof

- Viewing S^{n} as the one-point compactification of \mathbb{R}^{n}, an equivalent statement is that $h(U)$ is open in S^{n}.
- Each $x \in U$ is the center point of some disk $D^{n} \subset U$. It suffices to prove that $h\left(D^{n}-\partial D^{n}\right)$ is open in S^{n}.
- Restriction of h to D^{n} and ∂D^{n} are again embeddings. Hence $S^{n}-h\left(\partial D^{n}\right)$ has two path-components.
- These path components are $h\left(D^{n}-\partial D^{n}\right)$ and $S^{n}-h\left(D^{n}\right)$ (path connected by proposition).
- Path components of $S^{n}-h\left(\partial D^{n}\right)$ are same as its components.

Theorem(Invariance of Domain) (Brouwer)

Let $U \subset \mathbb{R}^{n}$ be a open set, and $h: U \longrightarrow \mathbb{R}^{n}$ is an embedding, then the image $h(U)$ is an open set in \mathbb{R}^{n}.

Proof

- Viewing S^{n} as the one-point compactification of \mathbb{R}^{n}, an equivalent statement is that $h(U)$ is open in S^{n}.
- Each $x \in U$ is the center point of some disk $D^{n} \subset U$. It suffices to prove that $h\left(D^{n}-\partial D^{n}\right)$ is open in S^{n}.
- Restriction of h to D^{n} and ∂D^{n} are again embeddings. Hence $S^{n}-h\left(\partial D^{n}\right)$ has two path-components.
- These path components are $h\left(D^{n}-\partial D^{n}\right)$ and $S^{n}-h\left(D^{n}\right)$ (path connected by proposition).
- Path components of $S^{n}-h\left(\partial D^{n}\right)$ are same as its components.
- The components of a space with finitely many components are open.
- $h\left(D^{n}-\partial D^{n}\right)$ is open in $S^{n}-h\left(\partial D^{n}\right)$ and hence also in S^{n}.

Manifold

Definition

M is called manifold if M is Hausdorff and is "locally Euclidean of dimension n " i.e. for each $x \in M, \exists$ nbhd U of x homeomorphic to an open subset of \mathbb{R}^{n}.

Equivalent definitions of a manifold

U can be taken to be homeomorphic to an open ball of \mathbb{R}^{n} or to \mathbb{R}^{n} itself.

Application to Manifolds

Theorem

Let M be a compact n-manifold and N be a connected n-manifold, then every injective map from M in N is homeomorphism.

Proof

- Suppose $h: M \longrightarrow N$ be an injective map. Clearly h is an embedding.
- Therefore suffices to prove that h is surjective. Since N is connected, suffices to prove that $h(M)$ is is both open and closed.
- $h(M)$ is closed.

Application to Manifolds

Theorem

Let M be a compact n-manifold and N be a connected n-manifold, then every injective map from M in N is homeomorphism.

Proof

- Suppose $h: M \longrightarrow N$ be an injective map. Clearly h is an embedding.
- Therefore suffices to prove that h is surjective. Since N is connected, suffices to prove that $h(M)$ is is both open and closed.
- $h(M)$ is closed.
- Use invariance of domain.

Division Algebras

Algebra
 An algebra structure on \mathbb{R}^{n} is a bilinear map $\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$.

Commutativity, associativity and identity element are not assumed.

Division Algebras

Algebra

An algebra structure on \mathbb{R}^{n} is a bilinear map $\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$.
Commutativity, associativity and identity element are not assumed.

Division Algebra

An algebra is a division algebra if the equations $a x=b$ and $x a=b$ has solution whenever $a \neq 0$.
$\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ are examples.

Division Algebras

Algebra

An algebra structure on \mathbb{R}^{n} is a bilinear map $\mu: \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$.
Commutativity, associativity and identity element are not assumed.

Division Algebra

An algebra is a division algebra if the equations $a x=b$ and $x a=b$ has solution whenever $a \neq 0$.
$\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ are examples.

Frobenius Theorem (1877)

Upto isomorphism \mathbb{R}, \mathbb{C} and \mathbb{H} are the only finite dimensional associative division algebras over \mathbb{R} with an identity element.

Some results on f.d. division algebras over \mathbb{R}

Abstract

Theorem If \mathbb{R}^{n} has a structure of division algebra over \mathbb{R}, then $n=2^{m}$.

Some results on f.d. division algebras over \mathbb{R}

```
Theorem
If }\mp@subsup{\mathbb{R}}{}{n}\mathrm{ has a structure of division algebra over }\mathbb{R}\mathrm{ , then }n=\mp@subsup{2}{}{m}\mathrm{ .
```


Milnor, Bott and Kervaire (1958)

Any finite dimensional division algebra over \mathbb{R} must have dimension $1,2,4$ or 8.

Some results on f.d. division algebras over \mathbb{R}

```
Theorem
If }\mp@subsup{\mathbb{R}}{}{n}\mathrm{ has a structure of division algebra over }\mathbb{R}\mathrm{ , then }n=\mp@subsup{2}{}{m}\mathrm{ .
```


Milnor, Bott and Kervaire (1958)

Any finite dimensional division algebra over \mathbb{R} must have dimension $1,2,4$ or 8.

Theorem
 \mathbb{R} and \mathbb{C} are the only finite dimensional division algebras over \mathbb{R} which are commutative and have an identity.

Proof

Proof

First assume that \mathbb{R}^{n} has commutative.

- Define a map $f: S^{n-1} \longrightarrow S^{n-1}, x \longmapsto x^{2} /\left|x^{2}\right|$.
- f is continuous since the multiplication map and the norm map are continuous(?)

Proof

Proof

First assume that \mathbb{R}^{n} has commutative.

- Define a map $f: S^{n-1} \longrightarrow S^{n-1}, x \longmapsto x^{2} /\left|x^{2}\right|$.
- f is continuous since the multiplication map and the norm map are continuous(?)
- $f(x)=f(-x)$ so we have $\bar{f}: \mathbb{R} \mathbb{P}^{n-1} \longrightarrow S^{n-1}$ which is injective: If $f(x)=f(y)$, then $x^{2}=\alpha^{2} y^{2}$.

$$
x^{2}-\alpha^{2} y^{2}=0 \Longrightarrow(x+\alpha y)(x-\alpha y)=0 \Longrightarrow x= \pm \alpha y
$$

Proof

Proof

First assume that \mathbb{R}^{n} has commutative.

- Define a map $f: S^{n-1} \longrightarrow S^{n-1}, x \longmapsto x^{2} /\left|x^{2}\right|$.
- f is continuous since the multiplication map and the norm map are continuous(?)
- $f(x)=f(-x)$ so we have $\bar{f}: \mathbb{R} \mathbb{P}^{n-1} \longrightarrow S^{n-1}$ which is injective: If $f(x)=f(y)$, then $x^{2}=\alpha^{2} y^{2}$.

$$
x^{2}-\alpha^{2} y^{2}=0 \Longrightarrow(x+\alpha y)(x-\alpha y)=0 \Longrightarrow x= \pm \alpha y
$$

- Since $\mathbb{R} \mathbb{P}^{n-1}$ and S^{n-1} are compact Hausdorff, \bar{f} is an embedding.
- If $n \neq 1$, then \bar{f} is surjective. Thus $\mathbb{R} \mathbb{P}^{n-1} \cong S^{n-1} \Longrightarrow n=2$

Proof continued...

Proof

Suppose A is a 2-dimensional commutative division algebra with identity 1_{A}. We show $A \cong \mathbb{C}$.

- Let $j \notin \operatorname{span}\left\{1_{A}\right\}$, then $\left\{1_{A}, j\right\}$ is a basis of A.
- WLOG, we can assume $j^{2}=a .1_{A}$ where $a \in \mathbb{R}$.

Proof continued...

Proof

Suppose A is a 2-dimensional commutative division algebra with identity 1_{A}. We show $A \cong \mathbb{C}$.

- Let $j \notin \operatorname{span}\left\{1_{A}\right\}$, then $\left\{1_{A}, j\right\}$ is a basis of A.
- WLOG, we can assume $j^{2}=a .1_{A}$ where $a \in \mathbb{R}$.
- Clearly $a<0$.
- WLOG $j^{2}=-1_{A}$

Proof continued...

Proof

Suppose A is a 2-dimensional commutative division algebra with identity 1_{A}. We show $A \cong \mathbb{C}$.

- Let $j \notin \operatorname{span}\left\{1_{A}\right\}$, then $\left\{1_{A}, j\right\}$ is a basis of A.
- WLOG, we can assume $j^{2}=a .1_{A}$ where $a \in \mathbb{R}$.
- Clearly $a<0$.
- WLOG $j^{2}=-1_{A}$

A finite dimensional commutative division algebra, not necessarily with an identity has dimension atmost 2 . There do exists commutative division algebras without identity. E.g. \mathbb{C} with $z . w=z . \bar{w}$

References

- A. Hatcher.Algebraic Topology. Cambridge University Press, 2002
- J. Munkres.Topology. Pearson, 2014

