Milnor K Theory

Ajay Prajapati
17817063

Dept. of Mathematics and Statistics
Indian Institute of Technology, Kanpur

End-Semester Exam presentation

Previously...

Steinberg group of a ring $R, S t_{n}(R)($ For $n \geq 3)$

It is the group defined by the generators $x_{i j}(r)$, with $1 \leq i, j \leq n, i \neq j$ and $r \in R$ with the following relations:

$$
\begin{aligned}
& x_{i j}(r) x_{i j}(s)=x_{i j}(r+s) \\
& {\left[x_{i j}(r), x_{k l}(s)\right] }= \begin{cases}1 & \text { if } j \neq k \text { and } i \neq 1 \\
x_{i l}(r s) & \text { if } j=k \text { and } i \neq 1 \\
x_{k j}(-s r) & \text { if } j \neq k \text { and } i=1\end{cases}
\end{aligned}
$$

The above relations are also satisfied by elementary matrices $e_{i j}(r)$ which generate the subgroup $E(R)$ of $G L(R)$, we have surjective group homomorphism $\varphi_{n}: S t_{n}(R) \longrightarrow E_{n}(R), x_{i j}(r) \longmapsto e_{i j}(r)$. Taking direct limit, we get a map $\varphi: S t(R) \longrightarrow E(R)$.

Previously...

K_{2} of R

The group $K_{2}(R)$ is defined to be kernel of $\varphi: S t(R) \longrightarrow E(R)$.

Theorem

(Steinberg) $K_{2}(R)=Z(S t(R))$. In particular, $K_{2}(R)$ is abelian.
Thus $S t(R)$ is a central extension of $E(R)$. Infact, we have

Theorem (Kervaire, Steinberg)

$S t(R)$ is the universal central extension of $E(R)$.

Outline of today's talk

(1) Steinberg Symbols
(2) K_{2} of fields
(3) Some applications of K_{2} in number theory

- Hilbert Symbols and Quadratic Reciprocity
- Brauer Groups
- Norm residue symbols
(9) Higher Milnor K groups

Motivation for Steinberg symbols

(1) Suppose $x, y \in E(R)$ are s.t. $x y=y x$, then $\left[\varphi^{-1}(x), \varphi^{-1}(y)\right]$ is a well-defined element of $\operatorname{St}(R)$
(2) which maps to $[x, y]=1$ under φ. i.e. $\left[\varphi^{-1}(x), \varphi^{-1}(y)\right] \in K_{2}(R)$.
(3) Infact, this is the most useful way of constructing elements of $K_{2}(R)$ and in case of fields, $K_{2}(R)$ is generated by such elements.

Steinberg Symbols

Let R be a commutative ring.

Definition

Let $u, v \in R^{\times}$. The Steinberg Symbol $\{u, v\}$ is defined as

$$
\begin{gathered}
\{u, v\}:=\left[\varphi^{-1}\left(d_{12}(u)\right), \varphi^{-1}\left(d_{13}(v)\right)\right] \quad \text { where } \\
d_{12}(u)=\left(\begin{array}{ccc}
u & 0 & 0 \\
0 & u^{-1} & 0 \\
0 & 0 & 1
\end{array}\right), \quad d_{13}(v)=\left(\begin{array}{ccc}
v & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & v^{-1}
\end{array}\right)
\end{gathered}
$$

Note that we have

- $d_{12}(u)=\left(e_{12}(u) e_{21}\left(-u^{-1}\right) e_{12}(u)\right)\left(e_{12}(1) e_{21}(-1) e_{12}(1)\right)$ and
- $d_{13}(u)=\left(e_{13}(u) e_{31}\left(-u^{-1}\right) e_{13}(u)\right)\left(e_{13}(1) e_{31}(-1) e_{13}(1)\right)$

Properties of Steinberg symbols

Notation

Define $w_{i j}(u):=x_{i j}(u) x_{j i}\left(-u^{-1}\right) x_{i j}(u) \in S t(R)$ and $h_{i j}(u):=w_{i j}(u) w_{i j}(-1) \in \operatorname{St}(R)$. It is clear that $\{u, v\}=\left[h_{12}(u), h_{13}(v)\right]$.

Lemma

The Steinberg symbol map $R^{\times} \times R^{\times} \longrightarrow K_{2}(R)$ is skew-symmetric and bilinear. i.e. $\{u, v\}=\{v, u\}^{-1}$ and $\left\{u_{1} u_{2}, v\right\}=\left\{u_{1}, v\right\}\left\{u_{2}, v\right\}$.

Proof

Note that $\varphi\left(w_{23}(1)\right)$ conjugates $d_{12}(u)$ to $d_{13}(u)$ and vice-versa. i.e.

$$
\varphi\left(w_{23}(1)\right) d_{12}(u) \varphi\left(w_{23}(1)\right)^{-1}=d_{13}(u) \quad \text { since } \varphi\left(w_{23}(1)\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

Properties of Steinberg symbols

proof continued

Skew-symmetry is proved as

$$
\begin{aligned}
\{u, v\} & =\left[\varphi^{-1}\left(d_{12}(u)\right), \varphi^{-1}\left(d_{13}(v)\right)\right] \\
& =\left[w_{23}(1) \varphi^{-1}\left(d_{13}(u)\right) w_{23}(1)^{-1}, w_{23}(1) \varphi^{-1}\left(d_{12}(v)\right) w_{23}(1)^{-1}\right] \\
& =w_{23}(1)\left[\varphi^{-1}\left(d_{13}(u)\right), \varphi^{-1}\left(d_{12}(v)\right)\right] w_{23}(1)^{-1} \\
& =w_{23}(1)\{v, u\}^{-1} w_{23}(1)^{-1}=\{v, u\}^{-1} \quad\left(\text { since } K_{2}(R)\right. \text { is central) }
\end{aligned}
$$

Let $x_{i j}(u)=\varphi^{-1}\left(d_{i j}(u)\right)$. Then

$$
\begin{aligned}
\left\{u, v_{1} v_{2}\right\} & =\left[x_{12}(u), x_{13}\left(v_{1} v_{2}\right)\right] \\
& =\left[x_{12}(u), x_{13}\left(v_{1}\right) x_{13}\left(v_{2}\right)\right] \\
& =\left[x_{12}(u), x_{13}\left(v_{1}\right)\right]\left[x_{12}(u), x_{13}\left(v_{2}\right)\right]\left[x_{13}\left(v_{1}\right),\left[x_{13}\left(v_{2}\right), x_{12}(u)\right]\right] \\
& =\left\{u, v_{1}\right\}\left\{u, v_{2}\right\}\left[x_{13}\left(v_{1}\right),\left\{u, v_{2}\right\}\right]^{-1} \\
& =\left\{u, v_{1}\right\}\left\{u, v_{2}\right\} \quad\left(\text { since } K_{2}(R) \text { is central }\right)
\end{aligned}
$$

Properties of Steinberg symbols

Lemma

Let R be any ring and $u, v \in R^{\times}$and $i \neq j, k \neq I$, then the elements $w_{i j}$ and $h_{i j}$ of $S t(R)$ defined above satisfy

$$
\left(w_{i j}(u)\right)^{-1}=w_{i j}(-u), \quad w_{i j}(u)=w_{j i}\left(-u^{-1}\right), \quad h_{i j}(1)=1
$$

$$
w_{k l}(u) w_{i j}(v)\left(w_{k l}(u)\right)^{-1}= \begin{cases}w_{i j}(v), & i, j, k, l \text { all distinct, } \\ w_{l j}\left(-u^{-1} v\right), & k=i, \quad i, j, l \text { all distinct }, \\ w_{i l}(-v u), & k=j, \quad i, j, k \text { all distinct, } \\ w_{j i}\left(-u^{-1} v u^{-1}\right), & k=i, j=l \\ w_{j i}(-u v u), & k=j, i=l\end{cases}
$$

Corollary

Let $u, v \in R^{\times}$, then $h_{12}(u v)=h_{12}(u) h_{12}(v)\{u, v\}^{-1}$.

Properties of Steinberg symbols

Theorem

The Steinberg symbol map $R^{\times} \times R^{\times} \longrightarrow K_{2}(R)$ also satisfies
(1) $\{u,-u\}=1$ for $u \in R^{\times}$,
(2) $\{u, 1-u\}=1$ for $u \in R^{\times}, 1-u \in R^{\times}$.

Proof

(1) (a) By above corollary, we need to show $h_{12}\left(-u^{2}\right)=h_{12}(u) h_{12}(-u)$.
(2) Using last identities of the lemma, we have

$$
\begin{aligned}
h_{12}(u) h_{12}(-u) & =w_{12}(u) w_{12}(-1) w_{12}(-u) w_{12}(-1) \\
& =w_{21}\left(u^{-2}\right) w_{12}(-1) \\
& =w_{12}\left(-u^{2}\right) w_{12}(-1)=h_{12}\left(-u^{2}\right)
\end{aligned}
$$

(3) (b) Since $-r=(1-r) /\left(1-r^{-1}\right)$, the first part implies

$$
1=\{r,-r\}=\{r, 1-r\}\left\{r, 1-r^{-1}\right\}^{-1}=\{r, 1-r\}\left\{r^{-1}, 1-r^{-1}\right\}=\{r, 1
$$

Properties of Steinberg symbols

Corollary

If R is a finite field, then all Steinberg symbols vanish in $K_{2}(R)$.

Proof

(1) Let $R=\mathbb{F}_{q}$. Then \mathbb{F}_{q}^{\times}is cyclic say generated by u.
(2) By bilinearity of symbol, it suffices to prove that $\{u, u\}=1$.
(3) If $\operatorname{char}(R)=2$, then $1=-1$ and we have $\{u, u\}=\{u,-u\}=1$.
(9) Otherwise q is odd. By skew-symmetry, we have $\{u, u\}=\{u, u\}^{-1}$. i.e. $\{u, u\}$ has order atmost 2.
(5) For any odd $m, n \in \mathbb{Z}$, we have $\{u, u\}=\{u, u\}^{m n}=\left\{u^{m}, u^{n}\right\}$.
(6) Since odd powers of u are same as non-squares in F_{q}^{\times}, it suffices to find a non-square x s.t. $1-x$ is also a non-square.
(1) such an x exists because the map $x \longrightarrow 1-x$ is an involution on the set $F_{q}-\{0,1\}$ and this set consists of $(q-1) / 2$ non-squares but only $(q-3) / 2$ squares.

K_{2} of fields

Theorem

If F is a field, then $K_{2}(F)$ is generated by Steinberg symbols.

Matsumoto's Theorem

If F is any (commutative) field, then $K_{2}(F)$ is the free abelian group on generators $\{u, v\}, u, v \in F^{\times}$, subject only to the relations of bilinearity in both variables and the relation $\{u, 1-u\}=1$.

Some applications of K_{2} in number theory

(1) We have seen $K_{2}\left(\mathbb{F}_{q}\right)=1$ for any finite field \mathbb{F}_{q} while it is a classical fact that there are no non-commutative finite division algebras (Wedderburn Theorem).
(2) Some close relationship between $K_{2}(F)$ for a field F and the existence of non-commutative finite dimensional division algebras over F. This is measured by Brauer Group $\operatorname{Br}(F)$ and is an important invariant of the arithmetic of a field.

Hilbert symbol

Let F be a field of characteristic $\neq 2$. The Hilbert symbol of F is the map $(,)_{F}: F^{\times} \times F^{\times} \longrightarrow\{ \pm 1\}$ defined as: for $a, b \in F^{\times},(a, b)=1$ if there exists $x, y, z \in F$, not all zero s.t. $z^{2}-a x^{2}-b y^{2}=0$, and $(a, b)=-1$ otherwise.

Why Hilbert Symbol?

Quadratic residue

Let $a \in \mathbb{Z}-\{0\}$ and p be an odd prime. If the equation $x^{2} \equiv a \bmod p$ has solution in F_{p}^{\times}, then a is said to be quadratic residue $\bmod p$.

Legendre Symbol
$\left(\frac{a}{p}\right)=1$ if a is a quadratic residue $\bmod p$ and -1 o.w.

Quadratic reciprocity law (Theorema "aureum")

Let p and q be odd primes. Then
p is quadratic residue $\bmod q \Longleftrightarrow q$ is quadratic residue $\bmod p$ (if

$$
p, q \not \equiv 3 \bmod 4)
$$

p is quadratic residue $\bmod q \Longleftrightarrow q$ is quadratic non-residue $\bmod p$
More compactly, $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\epsilon(p) \epsilon(q)}$ where $\epsilon(n)=(n-1) / 2$.

Properties of Hilbert Symbol

Proposition

Let F be a field of characteristic $\neq 2$ and suppose for any quadratic extension $F(\sqrt{q})$ of $F, N\left(F((\sqrt{q}))^{\times}\right)$has index atmost 2 in F^{\times}. Then the Hilbert symbol $(a, b)_{F}$ depends only on the Steinberg symbol $\{a, b\} \in K_{2}(F)$, and defines a homomorphism $K_{2}(F) \longrightarrow\{ \pm 1\}$.

Lemma

The Hilbert symbol $(a, b)_{F}=1 \Longleftrightarrow a$ lies in the image of the norm map $N: F(\sqrt{b})^{\times} \longrightarrow F^{\times}$.

Proof

(\Longrightarrow) Let $z^{2}=a x^{2}+b y^{2}$ where not all x, y, z are 0 . If $x=0$ then b is perfect square and $F(\sqrt{b})=F$. If not then $N(z / x+\sqrt{b} y / x)=a$. (\Longleftarrow) If $b=c^{2}$ then $(0,1, c)$ is the solution of $z^{2}=a x^{2}+b y^{2}$. If not then $a=N(\alpha+\sqrt{b} \beta)=\alpha^{2}-b \beta^{2} \Longrightarrow(1, \beta, \alpha)$ is a solution.

proof

Proof

(1) By Matsumoto's theorem, it is sufficient to prove that $(a, b)_{F}$ bilinear in both variables and $(a, 1-a)_{F}=1$ for all $a \in F-\{0,1\}$ (which is obvious since $\left.a 1^{2}+(1-a) 1^{2}=1\right)$.
(2) Hilbert symbol is symmetric as it takes values $\{ \pm 1\}$ hence sufficient to prove bilinearity in first variable.
(3) If $\left(a_{1}, b\right)_{F}=\left(a_{2}, b\right)_{F}=1$, then $a_{1}, a_{2} \in \operatorname{Im}(N) \Longrightarrow a_{1} a_{2} \in \operatorname{Im}(N)$ hence $\left(a_{1} a_{2}, b\right)_{F}=1$.
(9) Similarly, if $\left(a_{1}, b\right)_{F}=1$ and $\left(a_{2}, b\right)_{F}=-1$ then also result is clear.
(5) Lastly, if $\left(a_{1}, b\right)_{F}=\left(a_{2}, b\right)_{F}=-1$, then both a_{1}, a_{2} represent non-trivial element of the quotient $F^{\times} / N\left(F((\sqrt{q}))^{\times}\right)$which has cardinality atmost 2 . Hence $a_{1} a_{2} \in \operatorname{Im}(N)$.

Local fields satisfy previous theorem

Definition

A field which is locally compact w.r.t. a non-discrete topology is called a local field.

Theorem

Any local field is isomorphic to either \mathbb{R} or \mathbb{C}, or a finite extension of \mathbb{Q}_{p} or $\mathbb{F}_{p}((t))$, the field of formal Laurent power series over the finite field \mathbb{F}_{p}.

Theorem

Let F be a local field of characteristic $\neq 2$. Then for any non-trivial quadratic extension $F(\sqrt{b})$ of $F, N\left(F(\sqrt{q})^{\times}\right)$has index exactly 2 in F^{\times}.

p-adic fields

Fix a positive prime $p \in \mathbb{Z}$.

p -adic metric

For $x \in \mathbb{Z}$, write $x=p^{n} y$ where $p \nmid y$. Define $|x|_{p}:=p^{-n}$ is called p -adic norm on \mathbb{Z}. This can be extended to \mathbb{Q} by $\left|\frac{a}{b}\right|_{p}=\frac{|a|_{p}}{|b|_{p}}$ and will induce a metric $d(x, y)=|x-y|_{p}$ for $x, y \in \mathbb{Q}$.

It satisfies Strong triangle inequality: $|x-y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}$.

p -adic numbers

The completion of \mathbb{Q} w.r.t. $|\cdot|_{p}$ is called p -adic numbers denoted by \mathbb{Q}_{p}.

Ostrowski's Theorem

Every non-trivial absolute value on \mathbb{Q} is either equivalent to ususal absolute value or p -adic absolute value for some prime p.

Computation of $K_{2}(\mathbb{Q})$

Theorem

(1) $K_{2}(\mathbb{Q})$ is a direct limit of finite abelian groups, and $K_{2}(\mathbb{Q}) \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ is an infinite direct sum of $\mathbb{Z} / 2 \mathbb{Z}$, one for each prime number p.
(2) The Hilbert symbol $(,)_{\mathbb{Q}_{p}}$ when restricted to \mathbb{Q}, kills the summands of $K_{2}(\mathbb{Q})$ corresponding to primes other than p, and maps the summand corresponding to p onto $\{ \pm 1\}$.
(3) (Hilbert Reciprocity law) For $a, b \in \mathbb{Q}^{\times}$, we have

$$
(a, b)_{\mathbb{R}}=\prod_{\text {p prime }}(a, b)_{\mathbb{Q}_{p}}
$$

Quadratic reciprocity law

Quadratic reciprocity

$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\epsilon(p) \epsilon(q)}$ where $\epsilon(n)=(n-1) / 2$.

Proof

(1) Suppose r is a prime $\neq p, q$, then $(p, q)_{\mathbb{Q}_{r}}=1$ (Chevalley's Theorem) If $a, b, c \in \mathbb{Z}$, then $a X^{2}+b Y^{2}+c Z^{2}=0$ has a non-trivial solution in \mathbb{F}_{p} for every prime p and it lifts to \mathbb{Q}_{p} if $p \nmid 2 a b c$.
(2) $(p, q)_{\mathbb{R}}=1$
(3) $(p, q)_{\mathbb{Q}_{q}}=\left(\frac{p}{q}\right)$
(Hensel's Lemma): Let $f(X) \in \mathbb{Z}[X]$ be a polynomial and $f(X) \equiv 0$ $\bmod p$ has a solution $y \in \mathbb{F}_{p}$ s.t. $f^{\prime}(y) \not \equiv 0 \bmod p$. Then $\exists b \in \mathbb{Z}_{p}$ s.t. $y \equiv b \bmod p$ and $f(b)=0$.

Proof of Quadratic Reciprocity Law

proof continued

(1) $(p, q)_{\mathbb{Q}_{p}}=\left(\frac{q}{p}\right)$.
(2) $(p, q)_{\mathbb{Q}_{2}}=(-1)^{(p-1)(q-1) / 4}$

We need to prove that $(p, q)_{\mathbb{Q}_{2}}=-1$ if $p, q \equiv 3 \bmod 4$ and is 1 o.w. Suppose $p \equiv 1 \bmod 4$ then either $p \equiv 1 \bmod 8$ or $p \equiv 5 \bmod 8$. Then either p or $p+4 q$ is square in \mathbb{Q}_{2}.
If $p, q \equiv 3 \bmod 4$ and let (x, y, z) be primitive solution of $z^{2}-p x^{2}-q y^{2}=0$. Taking mod 4 , we get that $x^{2}+y^{2}+z^{2} \equiv 0$ $\bmod 4$. But $x^{2}, y^{2}, z^{2} \equiv 0$ or $1 \bmod 4$. Only possible solution is $x, y, z \equiv 0 \bmod 4$.

Brauer Groups

Central Simple Algebras

Let F be a field. A finite dimensional F-algebra A (associative with unit) is called central simple if $Z(A) \cong F$ i.e. center of A is precisely F and A has no non-trivial two sided ideals, i.e. A is simple as a ring.

The Wedderburn structure theorem implies that any such algebra A is F-isomorphic to $M_{n}(D)$ for some $n \geq 1$ and some f.d. division algebra D with center F.

Definition

We call two central simple algebras A and B stably isomorphic if for some $r, s, M_{r}(A) \cong M_{s}(B)$.

Brauer Groups

Definition

The Brauer group of F, denoted $\operatorname{Br}(F)$, is the set of isomorphism class of central simple F-algebras, with operation \otimes_{F}, identity $[F]$ and $[A]^{-1}:=\left[A^{o p}\right]$ since $A \otimes_{F} A^{o p} \cong \operatorname{End}_{F}(A)$ via identification $\left(a \otimes b^{o p}\right)(c)=a c b$.

Since $A \cong M_{n_{1}}\left(D_{1}\right)$ and $B \cong M_{n_{2}}\left(D_{2}\right), A$ is stably isomorphic to $B \Longleftrightarrow D_{1} \cong D_{2}$. Thus each stable isomorphism class contains unique central division algebra.
It is clear that $\operatorname{Br}(F)$ is actually the set of isomorphism classes of central division algebras over F.

Frobenius Theorem

Every finite dimensional division algebra over \mathbb{R} is either isomorphic to \mathbb{R}, \mathbb{C} or \mathbb{H}.

So $\operatorname{Br}(\mathbb{R}) \cong \mathbb{Z} / 2 \mathbb{Z}$. $\left(\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} \cong M_{4}(\mathbb{R})\right)$

Brauer Groups as Cohomology groups

Fix an algebraic closure \bar{F} of F and let $F_{\text {sep }}$ denote the seperable closure of F in \bar{F}.
Brauer groups are actually cohomology group of the absolute Galois group in disguise.

Theorem

There is an isomorphism

$$
H^{2}\left(\operatorname{Gal}\left(F_{\text {sep }} / F\right), F_{\text {sep }}^{\times}\right) \longrightarrow \operatorname{Br}(F)
$$

Galois Cohomology

Theorem (Kummer)

Let n be a positive integer and F be a field with $\operatorname{char}(F)=0$ or char $(F) \nmid n$ and containing μ_{n}, the group of $n^{\text {th }}$ roots of unity. Let K / F be a sufficiently large Galois extension, in particular for $K=F_{\text {sep }}$ then there is an isomorphism $\varphi: F^{\times} /\left(F^{\times}\right)^{n} \longrightarrow \operatorname{Hom}\left(\operatorname{Gal}(K / F), \mu_{n}\right)$ given by $\varphi(\sigma)(x)=\sigma(y) y^{-1}$ where $y \in K$ s.t. $y^{n}=x$.

Proof

Consider the short exact sequence of $\operatorname{Gal}(K / F)$-modules

$$
1 \longrightarrow \mu_{n} \longrightarrow K^{\times} \xrightarrow{x \mapsto x^{n}} K^{\times} \longrightarrow 1
$$

This gives a long exact sequence of cohomology groups

$$
\begin{gathered}
H^{0}\left(G, \mu_{n}\right)=\mu_{n} \longrightarrow H^{0}\left(G, F^{\times}\right)=F^{\times} \xrightarrow{\times \mapsto x^{n}} F^{\times} \\
\xrightarrow{\delta} H^{1}\left(G, \mu_{n}\right)=\operatorname{Hom}\left(G, \mu_{n}\right) \longrightarrow H^{1}\left(G, F^{\times}\right) \longrightarrow \ldots
\end{gathered}
$$

Norm residue symbol

(1) Let n be a positive integer and F be a field with $\operatorname{char}(F)=0$ or $\operatorname{char}(F) \nmid n$ and containing μ_{n}. Let G denote the absolute Galois group of $\mathrm{F}, \mathrm{Gal}\left(F_{\text {sep }} / F\right)$.
(2) Then there is a homomorphism called norm residue symbol, $K_{2}(F) \longrightarrow\{n$-torsion of $\operatorname{Br}(F)\}$ defined as:
(3) Identify $\operatorname{Br}(F)$ with $H^{2}\left(G ; F_{\text {sep }}^{\times}\right)$and view Kummer isomorphism φ as taking values in

$$
\operatorname{Hom}\left(G, \mu_{n}\right) \cong \operatorname{Hom}(G, \mathbb{Z} / n \mathbb{Z})=H^{1}(G, \mathbb{Z} / n \mathbb{Z})
$$

(9) let $\beta: H^{1}(G, \mathbb{Z} / n \mathbb{Z}) \longrightarrow H^{2}(G, \mathbb{Z})$ be the connecting map in the long exact cohomology sequence of short exact sequence of G-modules

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z} \longrightarrow 0
$$

Propetry of norm residue symbol

(1) Then for $\{u, v\} \in K_{2}(F)$,

$$
\{u, v\} \longmapsto(u, v):=v_{*}(\beta \circ \varphi(u))
$$

where we think v as giving the map of G-modules $\mathbb{Z} \longrightarrow F_{\text {sep }}^{\times}$, $1 \longmapsto v$.

Theorem

The map $\{u, v\} \longmapsto(u, v)$ is well defined. $(u, v)=1 \Longleftrightarrow v$ lies in the image of the norm map $N: F\left(u^{\frac{1}{n}}\right) \longrightarrow F^{\times}$. (This explains the name "norm residue symbol")

Another definition of norm residue symbol

Definition

Given $a, b \in F^{\times}$and ζ primitive $n^{\text {th }}$-root of unity, define $A_{\zeta}(a, b)$ the associative algebra with unit generated by two elements x and y and relations $x^{n}=a, y^{n}=b$ and $x y=\zeta y x$.

It can be proved that $A_{\zeta}(a, b)$ is central simple and map $F^{\times} \times F^{\times} \longrightarrow \operatorname{Br}(F)$ defines a map $K_{2}(F) \longrightarrow \operatorname{Br}(F)$ which is norm residue map defined above.

Higher Milnor K groups

For a field F, consider the tensor algebra of the group F^{\times}

$$
T\left(F^{\times}\right)=\mathbb{Z} \oplus F^{\times} \oplus\left(F^{\times} \otimes F^{\times}\right) \oplus\left(F^{\times} \otimes F^{\times} \otimes F^{\times}\right) \oplus \ldots
$$

Notation: $I(x)$ for the element of degree 1 in $T\left(F^{\times}\right)$for $x \in F^{\times}$.

Definition

The graded ring $K_{*}^{M}(F)$ is defined to be the quotient of $T\left(F^{\times}\right)$by the ideal generated by the homogenous elements $I(x) \otimes I(1-x)$ with $x \neq 0,1$. Milnor K-groups are defined to be the subgroup of elements of degree n.

Notation: The image of $I\left(x_{1}\right) \otimes \ldots \otimes I\left(x_{n}\right)$ in K_{n}^{M} will be denoted by $\left\{x_{1}, \ldots, x_{n}\right\}$.

- We have $K_{0}^{M}(F)=\mathbb{Z}$ and $K_{1}^{M}(F)=F^{\times}$.
- By Matsumoto's theorem, we also have $K_{2}^{M}(F)=K_{2}(F)$, the elements $\{x, y\}$ being the usual Steinberg symbols.
- Matsumoto's theorem was original motivation of Milnor to define the K-groups as above and he hoped that his construction will give some insight into the definition of higher K-groups of general rings.

Some results of Higher Milnor K groups

(1) $K_{n}^{M}\left(\mathbb{F}_{q}\right)=0$ for all $n \geq 2$ because $K_{2}^{M}\left(\mathbb{F}_{q}\right)=0$.
(2) For fields, Milnor K-groups does not agree with Quillen's K-groups beyond K_{2}. There is a natural map $\lambda_{n}: K_{n}^{M}(F) \longrightarrow K_{n}(F)$ which fails to be injective for global fields(i.e. number fields or finite extension of $\left.\mathbb{F}_{p}(t)\right)$ and $n=4$.
(3) Milnor K groups plays a fundamental role in higher class field theory.

References

(1) Jonathan Rosenberg, Algebraic K-theory and its applications. GTM167, Springer, 1994
(2) Charles A. Weibel, The K-book: An Introduction to Algebraic K-theory. American Mathematical Society, 2013
(3) John Milnor, Introduction to Algebraic K-theory. Princeton university press and University of Tokyo press, 1971
(9) J. P. Serre.A course in arithmetic. Springer, 1996

