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Elliptic Curves over Number Fields

One of the earliest and central results is:

Mordell-Weil Theorem
Let E be an elliptic curve defined over a number field K.

Then the group of
K-rational points, E(K), is finitely generated.

By structure theorem of finitely generated abelian groups, we get that

E(K) ∼= Zr ⊕ E(K)tors.

Here r is called the (algebraic) rank of E(K) and E(K)tors is the torsion
subgroup of E(K).

By a theorem of Mazur, the torsion part E(Q)tors is completely understood.

We can also associate an L-function L(E/K, s) to the elliptic curve which
has analytic properties similar to the Riemann zeta function.
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Birch and Swinnerton-Dyer (BSD) conjecture

Let E/Q be an elliptic curve and L(E/Q, s) be its L-function. Then

rank(E(Q)) = ords=1 L(E/Q, s).

(BSD formula) The leading term of the series expansion of L(E/Q, s)
around s = 1 can be given in terms of certain arithmetic invariants of E.

ords=1 L(E/Q, s) is called the analytic rank of E.
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Heegner Points and theorems of Gross-Zagier and
Kolyvagin

Let E/Q be an elliptic curve and K is a quadratic imaginary field. Bryan Birch
defined a special point yK in E(K) (unique upto sign and torsion) which he called
Heegner Point.

Gross-Zagier Formula (1986)

Let K be a quadratic imaginary field and yK in E(K) is the Heegner point. Then

L′(E/K, 1) = (some non-zero constant) · ĥ(yK).

In particular, L′(E/K, 1) 6= 0 if and only if yK has infinite order.

Kolyvagin (1989)

Assume that the Heegner point yK has infinite order in E(K). Then the group
E(K) has rank 1. And the Shafarevich-Tate group, X(E/K), is finite.
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Theorem (Gross-Zagier, Kolyvagin)

Suppose ords=1 L(E/Q, s) = r with r ∈ {0, 1}. Then

rankZE(Q) = r and X(E/Q) is finite

with an upper bound consistent with the BSD formula.

Weaker form of Kolyvagin’s Theorem

Let p be an odd prime such that the extension Q(E[p])/Q has Galois group
GL2(Z/pZ) and assume that p does not divide yK in E(K)/E(K)tors. Then:

1 The group E(K) has rank 1.

2 The p-torsion subgroup of the Shafarevich-Tate group, X(E/K)[p], is trivial.
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Consider the p-descent exact sequence

0 E(K)
pE(K) Sel(p)(E/K) X(E/K)[p] 0

δE

Kolyvagin’s Theorem A’

Let p an odd prime such that the extension Q(E[p])/Q has Galois group
GL2(Z/pZ) and assume that p does not divide yK in E(K)/E(K)tors. Then

Sel(p)(E/K) = FpδE(yK).

Remark: If yK 6∈ pE(K) =⇒ dimFp
Sel(p)(E/K) ≥ 1. So we need a upper

bound of dimension of Selmer group.

The key to Kolyvagin’s proof is that the Heegner point is not alone but lies at the
bottom of a system of algebraic points defined over ring class fields. This system
satisfies some nice properties which allows us to construct cohomology classes and
apply techniques from Galois cohomology to give upper bound on the Selmer
group.
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Notation

N A fixed positive integer

E An elliptic curve over Q of conductor N

K An imaginary quadratic field with discriminant D 6= −3,−4

OK the ring of integers of K
Heegner Hypothesis:

every prime p dividing N splits in K (1)

This gurantees the existence of an ideal N ⊂ OK such that
OK/N ∼= Z/NZ.

n a squarefree integer relatively prime to N

On := Z + nOK , the order of conductor n in OK
Hn the ring class field of K of conductor n

X0(N) the level N modular curve

τ denotes the complex conjugation
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Heegner Points on Modular curves

Recall that

Y0(N)(C) := X0(N)(C)− {cusps} ←→ {C/Λ ϕ−→ C/Λ′ with kerφ N -cyclic}

Note that [
C
O
−→ C

N−1

]
is a point on the modular curve X0(N).

Similarly letting Nn = On ∩N , we get that On/Nn ∼= Z/NZ. Hence

zn :=

[
C
On
−→ C

N−1n

]
(2)

is a point on the modular curve X0(N).

Definition

zn is called a Heegner Point of Conductor n on X0(N).
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Heegner points on elliptic curves

Since E/Q be an elliptic curve of conductor N . By Wiles et. al, ∃ a modular
parametrization (a map of algebraic curves over Q)

Φ : X0(N) −→ E (3)

Definition

yn := Φ(zn) is called a Heegner Point of Conductor n on E.

By theory of CM, zn ∈ X0(N)(Hn). Hence yn ∈ E(Hn).

The Heegner point yK ∈ E(K) in the statement of Gross-Zagier and Kolyvagin’s
theorem is

yK := NormH1/K(y1) =
∑

σ∈Gal(H1/K)

yσ1 (4)
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Overview

1 Introduction to BSD conjecture

2 Heegner Points

3 Kolyvagin’s Theorem
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Heegner points forms a Euler System

Proposition (Norm Relations)

Suppose n = ` ·m with ` - m and ` is inert in K.

Then

NormHn/Hm
(yn) = a` · ym (5)

where a` = `+ 1−#Ẽ(F`) is the trace of Frobenius.

Proposition (Congruence Relations)

Suppose n = ` ·m with ` - m inert in K and write `OK = λ. Then

1 λ splits completely in Hm.

2 Every prime λm|λ in Hm is totally ramified in Hn.

3 If λm = (λn)`+1 then yn ≡
(
Hm/Q
λm

)
ym (mod λn).
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Construction of cohomology classes
p > 2 was prime such that Gal(Q(E[p])/Q) ∼= GL2 (Fp) with p not dividing yK in
E(K)/E(K)tors.

Definition

A prime ` - N ·D · p is called a Kolyvagin prime if it satifies:

1 ` is inert in K.

2 a` ≡ `+ 1 ≡ 0 (mod p), where a` = `+ 1−#Ẽ (F`).

Now we let τ be the complex conjugation and we define the set

LE =

{
` prime : ` - N ·D · p,

(
K(E[p])/Q

`

)
∼ τ in Gal(K(E[p])/Q)

}
where ∼ means that τ lies in the Frobenius conjugacy class(

K(E[p])/Q
`

)
:=

{(
K(E[p])/Q

γ

)
: γ is a prime lying over `

}

Proposition

Every ` ∈ LE is a Kolyvagin prime.
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Let G` := Gal(H`/H1) then it is cyclic. Fix a generator σ` of G`.

Definition
The group ring element

D` :=
∑̀
i=1

iσi` =

`+1∑
i=0

σi` − 1

σ` − 1
∈ Z[G`]

is called the Kolyvagin derivative operator.

Let

NE := {square-free product of primes ` ∈ LE} (with convention that 1 ∈ NE)

and for every n ∈ NE , let

Gn : = Gal(Hn/H1) ∼=
∏
`|n

Gal(H`/H1) =
∏
`|n

G`

Dn : =
∏
`|n

D` ∈ Z[Gn]

with G1 := 1 and D1 = 1 by convention.
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Let n ∈ NE and yn ∈ E(Hn) be a Heegner point of conductor n. Then we define

[Dnyn] := Dnyn (mod pE(Hn)) ∈ E(Hn)/pE(Hn)

Proposition

[Dnyn] ∈ (E(Hn)/pE(Hn))Gn . (Recall Gn = Gal(Hn/H1))

We would like to construct a point in E(Hn)/pE(Hn) which is invariant not only
for Gn = Gal(Hn/H1) but also for Gn := Gal(Hn/K).

Fix a set S of coset representatives for the subgroup Gn in Gn and define:

Pn :=
∑
σ∈S

σDnyn (mod pE(Hn)) ∈ E(Hn)/pE(Hn).

Then the class [Pn] is in (E(Hn)/pE(Hn))Gn .
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0

H1(Hn/K,E)[p]

0 E(K)/pE(K) H1(K,E[p]) H1(K,E)[p] 0

0 (E(Hn)/pE(Hn))Gn H1(Hn, E[p])Gn H1(Hn, E)[p]Gn

Inf

δ

Res Res

δn

Lower row is exact since Kummer map is Gn-equivariant.

Middle Res is an isomorphism because we can deduce that there are no
p-torsion points defined over Hn. i.e., E(Hn)[p] = 0.
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Let c(n) be the unique class in H1(K,E[p]) such that:

Res c(n) = δn[Pn] in H1(Hn, E[p])Gn .

Let
d(n) = Image c(n) in H1(K,E)[p].

1 We study the property of these cohomology classes. For example, As p > 2,
the action of the complex conjugation τ ∈ Gal(K/Q) gives us the
decomposition (as Fp vector spaces)

H1(K,E[p]) = H1(K,E[p])+ ⊕H1(K,E[p])−

H1(K,E)[p] = H1(K,E)[p]+ ⊕H1(K,E)[p]−

It turns out that classes c(n) and d(n) lies in the either + or − eigenspace.

2 We also derive criterion for when the classes d(n)v are locally trivial.
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Local Tate duality

Theorem
Let ` be a Kolyvagin prime, λ = `OK , and Kλ be completion of K at λ.

Then
there is a non-degenerate pairing of Fp-vector spaces

〈·, ·〉 : E(Kλ)/pE(Kλ)×H1(Kλ, E)[p] −→ Z/pZ. (6)

induced by local Tate duality, Cartier duality, and Weil pairing.

This pairing relates the elements of the Selmer group to the cohomology classes
construced above.

Using the properties of cohomology classes c(n) and d(n), we can derive an upper

bound on the Selmer group Sel(p)(E/K).
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Thank You
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