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ABSTRACT
This report second part of a year long project on the topic "Heegner Points" under the guid-
ance of Dr. Somnath Jha, IIT Kanpur. The first part can be found here. The Birch and
Swinnerton-Dyer (BSD) conjecture is one of the central problems in the Theory of Elliptic
Curves which predicts the rank of an elliptic curve defined over Q. This was formulated in
1960’s based on the numerical evidence found by Bryan Birch and Peter Swinnerton Dyer.
Bryan Birch also found that elliptic curves over rationals are born with certain algebraic
points(defined over imaginary quadratic fields) which he called Heegner points, named af-
ter the German mathematician Kurt Heegner. He believed that this Heegner point (well-
defined upto torsion and sign) are key to the BSD conjecture for rank 1 case. Based on
numerical evidence, he formulated a precise conjecture which was proved by the fruitful
collaboration of Benedict Gross and Don Zagier in 1980’s. They proved a spectacular for-
mula (now known as Gross-Zagier formula) relating the first derivative of the L-function
(something analytic) to the canonical height of the Heegner point (someting algebraic). This
provided partial result in one direction of the BSD conjecture for rank 1. The rest of the work
was done by Victor Kolyvagin in late 1980’s thus completing that direction.

In this report, we will see the proof of Kolyvagin’s theorem under some mild hypothesis to
illustrate the main ideas. It is completely based on the wonderful paper of Gross, [Gro91],
where he explain these ideas. The key to Kolyvagin’s proof is that the Heegner point is not
alone but lies at the bottom of a system of algebraic points defined over ring class fields.
This system satisfies some nice properties which allows us to construct cohomology classes
and apply techniques from Galois cohomology to give upper bound on the Selmer group.

https://drive.google.com/drive/folders/1YMIAwVSz76DfWw-hk97IjSH_wQ9fASYQ
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§0. Pre-requisites and Notation

The reader is assumed to be fimiliar with:

• Algebraic Number Theory: Behaviour of primes (splitting, ramification, inert) in Ga-
lois extensions of number fields

• Theory of Elliptic Curves: Upto the level of [Sil86].

• Theory of Complex Multiplication: Upto the level of [Sil03], Chapter 2.

• Modular Forms, Hecke operators, and Modular Curves: Upto the level of [DS05],
Chapters 1, 2, and 5.

• Galois Cohomology: only basic Galois cohomology (upto [Sil86], Appendix B)

Notation: All the notation in this note is standard and mostly follows [Sil86]’s notation.

Gal(L/K) denotes the Galois group of the Galois extension L/K.

Hn(K, M) := Hn(Gal(K/K), M) where K is a field and M is a discrete Gal(K/K)-module.
(All Galois modules we consider will be discrete)

Hn(L/K, M) := Hn(Gal(L/K), M) where M is a discrete Gal(L/K)-module.

A[n] denotes the n-torsion subgroup of an abelian group A.

E(L) L-rational points of the elliptic curve E/K where L ⊃ K.

Sel(p)(E/K) denotes the p-Selmer group of a elliptic curve E defined over a number field K.

X(E/K) the Shafarevich-Tate group of the elliptic curve E/K.

Q(E[n]) field extension obtained by adjoining the coordinates of all n-torsion points of E

H the Poincare upper-half plane {τ ∈ C : Im(τ) > 0}

Pic0(C) the Picard group of a non-singular algebraic curve C

Knr the maximal unramified extension of a local field K

Few remarks:

1. We will have frequent use for the following construction: Let M/L and L/K be
Galois extensions and assume that Gal(M/L) is abelian. There is a natural action of
Gal(L/K) on Gal(M/L) defined as follows: given τ ∈ Gal(L/K) and σ ∈ Gal(M/L),
let τ̃ be any lift of τ to Gal(M/K). Then the action of τ on σ is given by

τ · σ = τ̃στ̃−1

(The fact that Gal(M/L) is abelian implies that this is independent of the choice of
τ̃.) The action of Gal(L/K) on Gal(M/L) is trivial precisely when M is an abelian
extension of K.

2. We will often be working with eigenspaces for involutions, and we make the following
sign convention: whenever ± appears in a formula, it is to be regarded as a fixed
choice of sign, and every other ± in that formula should agree with this choice and a
∓ indicates the opposite of this initial choice.
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§1. Introduction

Let L be an number field and E/L be an elliptic curve (EC) and E(L) ⊂ E(L̄) is the group of
L-rational points. A fundamental result in the study of ECs is the Mordell-Weil theorem.

Theorem 1.1. (Mordell-Weil theorem) The group E(L) is finitely generated abelian group.

By the structure theorem of finitely generated abelian groups, we have the decomposition

E(L) ∼= Zr ⊕ E(L)tors

Here r is called the (algebraic) rank of E(L) and E(L)tors is the torsion subgroup of E(L). The
E(L)tors part is well understood by a theorem of Mazur. On the other hand, the rank is
very mysterious and there are many unsolved conjectures about it even when L = Q. Most
prominent of those is the Birch and Swinnerton-Dyer (BSD) conjecture:

[Birch and Swinnerton-Dyer (BSD) Conjecture] Let E/Q be an elliptic curve and L(E/Q, s)
be its L-function. Then (see (here) for precise formulation)

• rank(E(Q)) = ords=1 L(E, s). (ords=1 L(E, s) is called the analytic rank of E)

• (BSD formula) The leading term of the series expansion of L(E/Q, s) around s = 1
can be given in terms of certain arithmetic invariants of E.

This conjecture is one of the biggest unsolved mysteries in mathematics. This has been
solved partially for rank 0 and rank 1 cases but nothing beyond. In this memoir, we see
Kolyvagin’s theorem, one of the great results towards proving one direction of BSD in rank
1 case by using so called Heegner points. Recall that in our previous semester work (here),
we defined Heegner points on elliptic curves and saw some of their basic properties. In this
memoir, we will study them more systematically and see how they can be used to under-
stand the group structure of elliptic curves.

Let E be an elliptic curve over Q of conductor N and let K be an imaginary quadratic field in
which all primes dividing N are split. The theory of complex multiplication and a modular
parameterization X0(N) −→ E can be used to define a Heegner point yK ∈ E(K). The
precise point yK depends on some choices, but it is well-defined up to sign and torsion (so
its canonical height ĥ(yK) is well-defined). If L(E/K, s) is the L-function of E over K, one
has L(E/K, 1) = 0 for trivial reasons, and Gross and Zagier proved the spectacular formula

L′(E/K, 1) =
(

1√
D

∫
E(C)

ω ∧ iω
)
· ĥ(yK).

Here D is the discriminant of K/Q and ω is the differential on E coming from the fixed
modular parameterization.

In particular, L′(E/K, 1) ̸= 0 if and only if yK has infinite order. i.e., analytic rank = 1 =⇒
algebraic rank ≥ 1. We would like to know whether there is an equality. In the late 1980’s,
Victor Kolyvagin shows the equality and proves the following theorem ([KL89]).

https://drive.google.com/drive/folders/1YMIAwVSz76DfWw-hk97IjSH_wQ9fASYQ
https://drive.google.com/drive/folders/1YMIAwVSz76DfWw-hk97IjSH_wQ9fASYQ
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Theorem 1.2. Let E be an EC over Q. Assume the point yK has infinite order in E(K). Then:

1. the group E(K) has rank 1.

2. the Shafarevich-Tate group, X(E/K), is finite.

Morover, combining results of both Gross-Zagier and Kolyvagin, we can obtain: (For the
proof, see [Dar04], theorem 3.22)

Theorem 1.3. (Gross-Zagier-Kolyvagin) Suppose ords=1 L(E/Q, s) = r with r ∈ {0, 1}. i.e.,
analytic rank is ≤ 1. Then

rankZ E(Q) = r and X(E/Q) is finite,

with an upper bound consistent with the BSD formula.

Now we concentrate on theorem 1.2. In his paper [Gro91], Gross explains the main steps of
Kolyvagin’s method by proving the following slightly weaker version of theorem 1.2:

Theorem 1.4. Let p be an odd prime such that the extension Q(E[p])/Q has Galois group
GL2(Z/pZ) and assume that p does not divide yK in E(K)/E(K)tors. Then:

1. The group E(K) has rank 1.

2. The p-torsion subgroup of the Shafarevich-Tate group, X(E/K)[p∞], is trivial.

In view of the above theorem, we make the following definition:

Definition 1.5. We say that a prime p is good prime if p is odd, Gal(Q(E[p])/Q) ∼=
GL2(Z/pZ), and yK ̸∈ pE(K).

Remark 1.6. (a) If E does not have CM then by Serre’s open image theorem ([Sil86], Chap-
ter III, Theorem 7.9), condition 2 holds for infinitely many primes.

(b) By Mordell-Weil theorem, condition 3 holds for infinitely many primes as well.

Recall that there exists an exact sequence of Fp vector spaces:

0 −→ E(K)/pE(K) δ−→ Sel(p)(E/K) −→ X(E/K)[p] −→ 0 (1.1)

Suppose p is a good prime. Then we can prove that there are no non-trivial p-torsion points
over K. So we have

rank(E(K)) = dimFp E(K)/pE(K). (1.2)

and we are left to prove:
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Proposition 1.7. Suppose p is a good prime. Then Sel(p)(E/K) is cyclic generated by δ(yK).

Let us see how this proposition implies the result of theorem 1.4.

Proof. (1.7 implies 1.4) Since p is good prime, 0 ̸= yK ∈ E(K)/pE(K), so dimFp(E(K)/pE(K))

̸= 0. But E(K)/pE(K) injects into Sel(p)(E/K), which has dimension 1 by proposition 1.7.
Hence by equation 1.2, rank(E(K)) = 1.

Morover, δ : E(K)/pE(K) ∼−→ Sel(p)(E/K) is an isomorphism of Fp-vector spaces. Hence
the cokernel, X(E/K)[p], is trivial.

The remaining part of this memoir is focused on proving proposition 1.7. In section 2, we
define the system of Heegner points on the modular curve X0(N) (where N is the conductor
of our elliptic curve E) and see some of their properties. In particular, how Galois group,
Atkin-Lehner involution, and Hecke operators acts on these points. In section 3, we push
this Heegner points on modular curves to E via a modular parametrization. In section 4,
we show that these system of points satisfies the properties of an Euler system. In section
5, we construct a sequence of cohomology classes (defined over K) using these points and
Kolyvagin’s derivative operators. In section 6, we study the property of these cohomology
classes which we continue in section 7, where we derive conditions for their local triviality.
In section 8, we recall some results from local Tate duality. In particular, we use Weil pairing,
cup product, and invariant map from local class field theory to construct a non-degenerate
pairing. Using this pairing and Cartier duality, we construct another pairing whose prop-
erties we study in section 9. In particular, we derive when the elements of a Selmer group
are locally trivial in terms of triviality of the cohomology classes constructed in section 5
(proposition 9.4). In section 10, we start with some Galois cohomology computations and
prove an isomorphism which helps construct yet another pairing on Selmer group. Then
we study the properties of this pairing and using it, see relation between different types of
objects (proposition 10.8). Finally we finish the proof of proposition 1.7 in proposition 10.9.

§2. Heegner Points on modular curves

Recall that in our last semester work (here), we defined Heegner points as follows:

Let ω ∈ H be a quadratic imaginary number satisfying Aω2 + Bω+C = 0 where (A, B, C) =
1. Denote the discriminant of ω as ∆(ω) := B2 − 4AC and let K be the imaginary quadratic
field Q(ω). For a positive integer N, if

A ≡ 0(mod N) and (∆(ω), 4N) = 1

then [ω] ∈ X0(N) = Γ0(N)\H∗ is called a Heegner Point (of discriminant ∆(ω)) on X0(N).

Then we saw that ω is a Heegner point of X0(N) ⇐⇒ ∆(ω) = ∆(Nω). Hence if we let

E =
C

⟨1, τ⟩ , E′ =
C

⟨1, Nτ⟩ , and the N-isogeny E −→ E′,

https://drive.google.com/drive/folders/1YMIAwVSz76DfWw-hk97IjSH_wQ9fASYQ
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then a Heegner point ω ∈ X0(N) corresponds to a pair of N-isogenous elliptic curves, each
having CM by the same order of K because ∆(ω) = ∆(Nω). Infact, this property character-
izes Heegner points and we shall use this definition in the subsequent sections.

Let us first set the notation.

N A fixed positive integer

E An elliptic curve over Q of conductor N

K An imaginary quadratic field with discriminant D ̸= −3,−4 (so K = Q(
√

D))

OK the ring of integers of K

n a squarefree integer relatively prime to N

On := Z + nOK, the order of conductor n in OK

Hn the ring class field of K of conductor n

Pic(On) the Picard group (or the Class group) of On (defined in [Cox03], section 7).

H = H1, the Hilbert Class Field of K, the maximal unramified abelian extension

τ denotes the complex conjugation

Now we see some Galois group computations which will be useful later. Let n be a square-
free integer and n = ℓ · m, where ℓ ∤ m. We have the following diagram:

Q

K

H1

Hℓ

Hn

Hm

Gm Gℓ

(2.1)

Let us call Gn := Gal(Hn/H1), the Galois group of the extension Hn/H1. Since O×
K = Z× =

{±1}, by degree counting arguments (using the formula in Theorem 7.24, [Cox03]) we find
that Hℓ and Hm are linearly disjoint over H1. Hence we have,

Gn ∼= Gℓ × Gm ∼= ∏
ℓ|m

Gℓ.

Also by Galois theory, we find that Gℓ = Gal(Hℓ/H1) ∼= Gal(Hn/Hm). We have following
proposition which will be very useful later:
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Lemma 2.1. If ℓ is inert in K then Gℓ is a cyclic group of order ℓ+ 1.

Proof. First let us look at the diagram:

Q

K

H1

Hn

⟨1, τ⟩

Pic(OK)

(OK/nOK)
×/(Z/nZ)×

We note that Gal(H1/K) ∼= Pic(OK) by Artin reciprocity map from class field theory. Also,

Gal(Hn/H1) ∼=
Gal(Hn/K)
Gal(H1/K)

∼=
Pic(On)

Pic(OK)
∼−→ (OK/nOK)

×

(Z/nZ)×

where the last isomorphism is deduced by the fact that Pic(On)/ Pic(OK) is isomorphic to
IK(n) ∩ PK/PK,Z(n) and this group sits in the exact sequence:

0 → (Z/nZ)× −→ (OK/nOK)
× −→ IK(n) ∩ PK

PK,Z(n)
→ 0

Now we specialize ourselves to the case n = ℓ inert. Let λ = ℓOK and Fλ = OK/λ then

Gℓ
∼= F×

λ /F×
ℓ

which is clearly of order (ℓ+ 1) as λ is inert in K.

Remark 2.2. The Galois group Gal(Hn/Q) is a generalised dihedral group:

Gal(Hn/Q) ≃ Gal(Hn/K)⋊ Gal(K/Q)

where complex conjugation τ, which generates Gal(K/Q), acts on Gal(Hn/K) by sending
an automorphism σ to its inverse, i.e. τ−1στ = σ−1.

Now we return to Heegner points. Since we have fixed a positive integer N and a quadratic
imaginary field K, it is not clear whether there exists Heegner points ω ∈ X0(N) with E =
C/⟨1, ω⟩ having CM with an order of K. Infact, such Heegner point will always exist if

every prime p dividing N splits in K (2.2)

This condition is called “Heegner Hypothesis" in literature and we will assume that our field
K satisfies this. This gurantees the existence of an ideal N ⊂ OK such that OK/N ∼= Z/NZ

([Gro84], section 1). We also have N−1/OK
∼= NN−1/NOK = OK/N ∼= Z/NZ.
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Let Nn = On ∩ N . Then Nn is an invertible ideal of On (since (n, N) = 1 so On ∩ N is a
proper On-ideal), with N−1

n /On ∼= Z/NZ. Hence

zn :=
[

C

On
−→ C

N−1
n

]
(2.3)

is a point on the modular curve X0(N). The point zn can also be denoted as

zn =

[
C

On
,
N−1

n
On

]
,

isomorphism class of the pair, an elliptic curve together with a N-cyclic subgroup.

Definition 2.3. The point zn ∈ X0(N) is called a Heegner point of conductor n.

Proposition 2.4. The point zn as defined above (2.3) lies in X0(N)(Hn).

Proof. Recall that there is a canonical model for X0(N) over Q given by the modular poly-
nomial defined as follows: FN is the minimal polynomial of jN over C(j) where j(z) is the
modular j-invariant and jN(z) := j(Nz). So FN(Y) ∈ C(j)[Y]. If we replace every occurence
of j by X then we get FN(X, Y) ∈ C[X, Y]. We can prove that FN(X, Y) ∈ Z[X, Y]. By the
way FN is defined and using the correspondence between varieties and function fields from
algebraic geometry, we obtain that

Z0(N) : FN(u, v) = 0 (2.4)

is an irreducible plane model for X0(N).

Now the point zn ∈ Γ0(N)\H∗ can be taken in zn ∈ H. Because C/On and C/N−1
n has CM

by same order, On, the discriminants of zn and N · zn are same and from theory of Complex
Multiplication, j(zn) and j(Nzn) are both in Hn.

So we have a set of Heegner points of conductor n

Sn :=
{[

C

On
−→ C

(N ∩On)−1

]
: N ⊂ OK ideal such that

OK

N
∼=

Z

NZ

}
Sn is stable under the action of Gal(Hn/Q):

Recall from 2.2 that Gal(Hn/Q) ≃ Gal(Hn/K)⋊Gal(K/Q) where τ acts on σ ∈ Gal(Hn/K)
by sending it to σ−1. Hence we only need to know the action of τ and σ to know the action
of whole group Gal(Hn/Q).

Proposition 2.5. The action of complex conjugation τ ∈ Gal(Hn/Q) on S is the following:

τ(zn) = τ

(
C

On
,
N−1

n
On

)
=

(
C

On
,
N−1

n

On

)
=

(
C

On
,

N−1Nn

On

)
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Morover, directly from the theory of complex multiplication, we have

Proposition 2.6. Let σ ∈ Gal(Hn/K). Then we have

σ(zn) = σ

(
C

On
,
N−1

n
On

)
=

(
C

a−1
σ

,
N−1

n a−1
σ

a−1
σ

)
where aσ ∈ PicOn is the ideal that corresponds to σ under the isomorphism PicOn ∼=
Gal(Hn/K) induced by the Artin reciprocity map.

Proof. Recall that σ ∈ Gal(Hn/K) acts on j(−) by j(− · a−1
σ ). Hence we get that

σ(j(On)) = j(On · a−1
σ ) and σ(j(N−1

n )) = j(N−1
n · a−1

σ )

Now the proposition is clear.

Action of Atkin-Lehner involution:

Proposition 2.7. The Atkin-Lehner involution wN acts on Heegner points as

wN(zn) = wN

(
C

On
,
N−1

n
On

)
=

(
C

N−1
n

,
N−1On

N−1
n

)

Action of Hecke operators:

We now define a norm map on the Jacobian of modular curve, J(X0(N)), (by Abel-Jacobi
theorem, we can identify the classical Jacobian variety J(X0(N)) of X0(N) with Pic0(X0(N)))
and derive a very useful relation between it and the Hecke operators (2.8).

NormHn/Hm : J(X0(N))(Hn) −→ J(X0(N))(Hm), x 7−→ ∑
σ∈Gℓ

σ(x).

Lemma 2.8. Let n be a squarefree integer and n = ℓ · m where ℓ is a prime. Then

Tℓ(zm) = NormHn/Hm(zn)

where Tℓ is the Hecke operator on J(X0(N)).

Proof. Let On = Z + nOK be the order of conductor n. Let E = C/Om and CN = N−1
m /Om.

By the definition of the Hecke operator, we have

Tℓ(zm) = ∑
Cℓ⊂E[ℓ]

(E/Cℓ, (CN + Cℓ)/Cℓ)

where the sum is over the ℓ+ 1 cyclic subgroups of E[ℓ] of order ℓ.
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On the other hand, since ℓ and m are coprime, we have

zn =

(
C

On
,
N−1

n
On

)
=

(
C/Om

Cℓ
,
N−1

n /Om

Cℓ

)
for some cyclic subgroup Cℓ of C/Om of order ℓ since = Om/On is of order ℓ. Now,

NormHn/Hm(zn) = ∑
σ∈Gal(Hn/Hm)

σ

(
C

On
,
N−1

n
On

)

= ∑
σ∈Gal(Hn/Hm)

σ

(
C/Om

Cℓ
,
N−1

n /Om

Cℓ

)

= ∑
σ∈Gal(Hn/Hm)

(
C/Om

σ(Cℓ)
,
N−1

n /Om

σ(Cℓ)

)

where σ(Cℓ) is another cyclic subgroup of C/Om of order ℓ and as σ varies over all elements
of Gal(Hn/Hm) ∼= Gℓ, σ(Cℓ) varies over all (ℓ+ 1) cyclic subgroups of order ℓ.

§3. Heegner Points on Elliptic Curves

Since our elliptic curve E has conductor N, by modularity theorem we have a morphism
(defined over Q) of varieties

Φ : X0(N) −→ E (3.1)

which is called a modular parametrization of E. We are going to use this map to transport the
system of Heegner points on X0(N) constructed in previous section to define a system of
Heegner points on E.

Definition 3.1. yn := Φ(zn) ∈ E is called a Heegner point of conductor n on E.

Since Φ is defined over Q, by proposition 2.4 yn actually belongs in E(Hn).

Note that the modular parametrization ΦE induces a map between the Picard groups of
the modular curve and the elliptic curve ([Sil86], section 2.3). By [Sil86], proposition 3.4,
Pic0(E) ∼= E as groups and by Abel-Jacobi theorem ([DS05], theorem 6.1.2), Pic0(X0(N)) ∼=
J(X0(N)). Hence we obtain a map (also denoted by Φ)

Φ : J(X0(N)) −→ E. (3.2)

Moreover if X0(N) has genus greater than 0 then X0(N) embeds in J(X0(N)) via the map
x 7−→ [(x)− (∞)] and Φ in equation 3.1 is just restriction of Φ in equation 3.2.

We also have a norm map on the elliptic curve E as follows:

NormHn/Hm : E(Hn) −→ E(Hm), P 7−→ ∑
σ∈Gℓ

σ(P).
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Morover, this norm map is compatible with the norm map previously on J(X0(N)) in the
sense that the following diagram commutes:

J(X0(N))(Hn) E(Hn)

J(X0(N))(Hm) E(Hm)

Φ

NormHn/Hm NormHn/Hm

Φ

We now define the Heegner point (unique upto torsion and sign) which appears in the state-
ment of Gross-Zagier formula and Kolyvagin’s theorem:

yK := NormH1/K(y1) = ∑
σ∈Gal(H1/K)

σ(y1) ∈ E(K) (3.3)

§4. Euler System

In this section, we see that the set of Heegner points on elliptic curves defined above satisfies
the properties of a so called Euler system.

Proposition 4.1. (Norm Relations) Suppose n = ℓ · m with ℓ ∤ m inert in K. Then

NormHn/Hm(yn) = aℓ · ym

where aℓ = ℓ+ 1 − #Ẽ(Fℓ) is the trace of Frobenius.

Proof. This directly follows from lemma 2.8 by a simple computation:

NormHn/Hm(yn) = NormHn/Hm(Φ(zn))

= Φ(NormHn/Hm(zn))

= Φ(Tℓ(zm))

= Tℓ(Φ(zm))

= aℓ · ym

because by Eichler-Shimura, Tℓ acts on an elliptic curve by multiplication-by-aℓ map.

Proposition 4.2. (Congruence Relations) Suppose n = ℓ · m with ℓ ∤ m inert in K and write
ℓOK = λ. Then

(a) λ splits completely in Hm.

(b) Every prime λm lying over λ is totally ramified in Hn.

(c) If λn is the unique prime of Hn lying above λm, then

yn ≡
(

Hm/Q

λm

)
(ym) (mod λn)
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Remark: Hm/Q is a non-abelian (generalized dihedral) extension so we get such an
expression for every prime λm lying above λ.

Equivalently,
redλn(yn) = Frobℓ(redλm(ym)) ∈ Ẽ(Fℓ2)

where
redλn : E(Hn) −→ Ẽ(On/λn) = Ẽ(Fℓ2)

is (mod λn) reduction map, redλm is (mod λm) reduction map of E, and Frobℓ is the
power ℓ Frobenius map on Fℓ2 .

Proof. We have the following diagram:

Q

K

Hm

Hn

ℓ

λ

· · · λm · · ·

· · · λn · · ·

· ·

· ·

Z/ℓZ = Fℓ

OK/λ = Fℓ

OHm /λm = Fℓ2

OHn /λn = Fℓ2

(a) The prime λ = ℓOK is principal in K and has norm ℓ2 which is prime to m, the conductor
of Hm. Hence λ is in kernel of the Artin map IK(mOK) −→ Gal(Hm/K) i.e.,

(
Hm/K

λ

)
= 1.

Hence λ splits completely in Hm.

(b) Recall from diagram ?? that Hℓ and Hm are linearly disjoint over H1 and Hn = HℓHm. In
Hℓ/H1, all primes lying above λ are totally ramified Since OK = ±1 because they divide the
conductor ℓ. Since ramification multiplies in tower this result follows.

(c) It is clear that the two statements are equivalent (by definition, the reduction of
(

Hm/Q
λm

)
is Frobℓ). Now we compute aℓ · redλm(ym) in two ways. Firstly, by Norm relations (4.1),

aℓ · ym = ∑
σ∈Gal(Hn/Hm)

σ(yn)

Reducing this (mod λn), we get

aℓ redλm(ym) = ∑
σ

σ̃(redλn(yn))

= ∑
σ

redλn(yn)

= (ℓ+ 1) redλn(yn)

Also, by the Eichler-Shimura congruence relation, we get

Tℓ(zm) = Frobℓ(zm) + Frobtr
ℓ (zm) as divisors onX0(N)/F

ℓ2
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Now, apply (mod λm) reduced modular parametrization Φ̃ both sides,

aℓ · redλm(ym) = Frobℓ(redλm(ym)) + ∑
x∈Frob−1(ym)

redλm(x)

= (ℓ+ 1) Frobℓ(redλm(ym))

Thus we get the required result. (The last equality because αℓ = α1/ℓ for all α ∈ Fℓ2)

§5. Construction of Cohomology Classes

Definition 5.1. A prime ℓ ∤ N · D · p is called a Kolyvagin prime if it satisfies

(a) ℓ is inert in K

(b) aℓ ≡ (ℓ+ 1) ≡ 0 (mod p) where aℓ == ℓ+ 1 − #Ẽ(Fℓ).

It is not obvious whether even a single Kolyvagin prime exists. But we will see that infact,
there are infinitely many Kolyvagin primes. For this we study the extension K(E[p])/K.

Proposition 5.2. The extension K(E[p])/K is unramified outside the primes which divide
p · N. (recall that N was the conductor of E)

Proof. Let λ be a prime of K which does not divide p · N. Then E has good reduction over
Oλ. Let γ be a prime of OK(E[p]) lying above λ. Then we want to prove that the map

Gal(K(E[p])γ/Kλ) −→ Gal(Fγ/Fλ), σ 7−→ σ̃ (5.1)

is injective. Since E has good reduction (mod λ), we have the injection

E(K(E[p])γ)[p] = E[p] ↪−→ Ẽ(Fγ)

Let σ ∈ Gal(K(E[p])γ/Kλ) be such that σ̃ is trivial on Fγ. Then because of above inclusion,
σ fixes E[p] hence it is trivial on K(E[p])γ. So the map 5.1 is injective.

Now we let τ be the complex conjugation and we define the set

LE =

{
ℓ prime : ℓ ∤ N · D · p,

(
K(E[p])/Q

ℓ

)
∼ τ in Gal(K(E[p])/Q)

}
where ∼ means that τ lies in the Frobenius conjugacy class(

K(E[p])/Q

ℓ

)
:=
{(

K(E[p])/Q

γ

)
: γ is a prime lying over ℓ

}
First note that by 5.2, if ℓ ∤ N · D · p then ℓ is unramified in K(E[p])/Q. Hence it makes sense
to talk about Frobenius element of γ lying above ℓ. Also by Chebotarev Density theorem,
the above set has positive density and hence it is infinite.
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Proposition 5.3. Every ℓ ∈ LE is a Kolyvagin prime.

Proof. This follows directly from the computation of characteristic polynomial of the action
of Frobenius and τ as linear transformations on Fp vector space E[p]. Characteristic poly-

nomial of τ is x2 − 1 (mod p) and of
(

K(E[p])/Q

γ

)
is x2 − aℓx + ℓ (mod p). Since they are

conjugate, their characterstic polynomials must be the same. Hence

x2 − aℓx + ℓ ≡ x2 − 1 (mod p).

Finally, ℓ is inert in K since τ has order 2 in Gal(K/Q) so inertia of ℓ is non-trivial.

Let ℓ ∈ LE be a Kolyvagin prime, λ := ℓOK, and Fλ be the residue field at λ. Since τ has
order 2 and ℓ is inert in K, λ splits completely in K(E[p])/K which means that Fλi

∼= Fλ for
λi a prime in K(E[p]) lying above λ. Hence

Ẽ(Fλ)[p] = Ẽ(Fλi)[p]
∼= Z/pZ × Z/pZ.

We now consider the action of τ on this space to deduce:

Proposition 5.4. The Fp-vector space Ẽ(Fλ)[p] is decomposed as eigenspaces

Ẽ(Fλ)[p] = Ẽ(Fλ)[p]+ ⊕ Ẽ(Fλ)[p]−

of the action of τ and both of these eigenspaces are isomorphic to Z/pZ.

Proof. The decomposition exists because characteristic polynomial of τ can be factored into
linear terms. To prove that they are isomorphic to Z/pZ, it is sufficient to prove that they
both are non-trivial. If we call Frobℓ the Frobenius map x 7−→ xℓ then Frobℓ = τ on Fλ.
Now we compute

|Ẽ(Fλ)[p]+| = |{P ∈ Ẽ(Fλ)[p] : Frobℓ P = P}|
= |Ẽ(Fℓ)[p]| ≡ 0 (mod p)

since Ẽ(Fℓ) has order ℓ+ 1 − aℓ which is divisible by p. Similarly,

|Ẽ(Fλ)
−| = |{P ∈ Ẽ(Fλ) : Frobℓ P = −P}|

= | ker(Frobℓ +1)|
= deg(Frobℓ +1) (since (Frobℓ +1) is a seperable map, [Sil86], Corollary III.5.5)
= det(Frobℓ +1) (using the properties of Weil pairing and dual isogeny)
= Tr(Frobℓ) + det(Frobℓ) + 1 (true for any 2 × 2 linear transformation)
= aℓ + ℓ+ 1 ≡ 0 (mod p)

so Ẽ(Fλ)
− has order divisible by p hence Ẽ(Fλ)[p]− is non-trivial.
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We are going to use the system of Heegner points we have defined to construct cohomology
classes in H1(K, E[p]). One way to do so would be to simply take the trace of the points
yn from Hn to K and then push it to H1(K, E[p]) through the map δ, but this does not
yield interesting infomation. Instead we shall apply an operator to the yn in order to ob-
tain Gal(Hn/H1)-invariant elements, then computing the trace from H1 to K will yield the
desired Gal(Hn/K)-invariant classes.

Let ℓ ∈ LE be a Kolyvagin prime, so ℓ is inert in K and by lemma 2.1, Gℓ := Gal(Hℓ/H1) is
cyclic. Fix a generator σℓ of Gℓ.

Definition 5.5. The group ring element

Dℓ :=
ℓ

∑
i=1

iσi
ℓ =

ℓ+1

∑
i=0

σi
ℓ − 1

σℓ − 1
∈ Z[Gℓ]

is called the Kolyvagin derivative operator. Let

NE := {square-free product of primes ℓ ∈ LE} (with convention that 1 ∈ NE)

and for every n ∈ NE, let

Gn : = Gal(Hn/H1) ∼= ∏
ℓ|n

Gal(Hℓ/H1) = ∏
ℓ|n

Gℓ

Dn : = ∏
ℓ|n

Dℓ ∈ Z[Gn]

with G1 := 1 and D1 = 1 by convention.

Remark 5.6. Gross ([Gro91]) defines these derivative operators in the following way: Let

Trℓ := ∑
σ∈Gℓ

σ ∈ Z[Gℓ].

Then Dℓ is defined to be the solution of the following equation in Z[Gℓ]:

(σℓ − 1) · Dℓ = ℓ+ 1 − NormHℓ/H1 .

It is easy to see that Dℓ defined above satisfies this.

Let n ∈ NE and yn ∈ E(Hn) be a Heegner point of conductor n. Then we define

[Dnyn] := Dnyn (mod pE(Hn)) ∈ E(Hn)/pE(Hn)

Proposition 5.7. [Dnyn] ∈ (E(Hn)/pE(Hn))Gn .

Proof. It suffices to show that for all ℓ|n, [Dnyn] is fixed by σℓ, the generator of Gℓ. Hence we
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must prove that: (σℓ − 1)Dnyn ∈ pE(Hn). We can immediately check that

(σℓ − 1)Dℓ = (ℓ+ 1)−
ℓ+1

∑
i=1

σi
ℓ = (ℓ+ 1)− NormHℓ/H1

This implies that

(σℓ − 1)Dnyn = (σℓ − 1)DℓDmyn

= (ℓ+ 1)Dmyn − NormHℓ/H1(Dmyn)

= (ℓ+ 1)Dmyn − Dm(NormHℓ/H1 yn)

= (ℓ+ 1)Dmyn − Dm(aℓym) ∈ pE(Hn) (since ℓ is a Kolyvagin prime)

We would like to construct a point in E(Hn)/pE(Hn) which is invariant not only for Gn =
Gal(Hn/H1) but also for Gn := Gal(Hn/K) (an abelian group).

To do so, fix a set S of coset representatives for the subgroup Gn in Gn and define:

Pn := ∑
σ∈S

σDnyn.

Then clearly the class [Pn] is in (E(Hn)/pE(Hn))Gn .

In order to define a system of cohomology classes we first need a lemma:

Lemma 5.8. The curve E has no p-torsion rational over Hn.

Proof. If not, either E(Hn)[p] = Z/pZ or E(Hn)[p] = (Z/pZ)2. The first implies that E[p]
has a cyclic subgroup scheme over Q, as Hn is Galois over Q. Hence the Galois group of
Q(E[p]) is contained in a Borel subgroup of GL2(Z/pZ).

If E(Hn)[p] = (Z/pZ)2, then Q(E[p]) is a subfield of Hn and we have a surjective homo-
morphism Gn −→ GL2(Z/pZ). This is impossible whenever p > 2 because GL2(Z/pZ) is
not a quotient of a group of dihedral type.

From this lemma it follows immediately:

Lemma 5.9. There exists an isomorphism induced by restriction:

H1(K, E[p]) ∼−→ H1(Hn, E[p])Gn .

Proof. Consider the inflation-restriction exact sequence for Gal(Q/Hn) ⊴ Gal(Q/Q):

0 H1(Gn, E(Hn)[p]) H1(K, E[p]) H1(Hn, E[p])Gn H2(Gn, E(Hn)[p])
Inf Res

From above lemma (5.8), we have E(Hn)[p] = 0, so the kernel of the map Res is 0, while the
cokernel injects into a group which is 0. So it is an isomorphism.
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Now we define the cohomology classes. Consider the following diagram:

0

H1(Hn/K, E)[p]

0 E(K)/pE(K) H1(K, E[p]) H1(K, E)[p] 0

0 (E(Hn)/pE(Hn))Gn H1(Hn, E[p])Gn H1(Hn, E)[p]Gn

Inf

δ

Res Res

δn

(5.2)
The bottom row is exact because the Kummer map δn is Galois equivariant. The column on
the right is the inflation-restriction sequence for Gal(K/Hn) ⊴ Gal(K/K) and the middle
vertical map is an isomorphism from lemma 5.9.

Definition 5.10. Let c(n) be the unique class in H1(K, E[p]) such that:

Res c(n) = δn[Pn] in H1(Hn, E[p])Gn .

Let
d(n) = Image c(n) in H1(K, E)[p].

By commutativity of the diagram and exactness of the bottom row, Res c(n) = 0. Hence
there is a unique d̃(n) ∈ H1(Hn/K, E)[p] such that

Inf d̃(n) = d(n) in H1(K, E)[p].

Remark 5.11. Observe that there is a natural action of complex conjugation τ on every group
of above diagram (5.2). For example, τ acts on H1(K, E[p]) by acting pointwise on cocycles.
Also note that this action of τ commutes with all the maps in the diagram. For example, let
us verify that τ commutes with δ: Let P ∈ E(K) then δ(P) is represented by the cocycle

ξ : Gal(K/K) −→ E[p], σ 7−→ σ(Q)− Q

where [p]Q = P. Then δ(τ(P)) is represented by the cocycle: σ 7−→ σ(τ(Q)) − τ(Q) as
clearly [p]τ(Q) = τ(P).

Now we derive conditions under which these cohomology classes are trivial.

Proposition 5.12. (a) c(n) is trivial ⇐⇒ Pn ∈ pE(Hn).

(b) d(n) and d̃(n) are trivial ⇐⇒ Pn ∈ pE(Hn) + E(K).
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Proof. (a) c(n) = 0 ⇐⇒ Res c(n) = 0 ⇐⇒ δn[Pn] = 0 ⇐⇒ [Pn] = 0 ⇐⇒ Pn ∈ pE(Hn).

(b) Since Inf is injective, d(n) = 0 ⇐⇒ d̃(n) = 0. And this happens if and only if either
c(n) is trivial, or c(n) is in the image by δ of an element in E(K)/pE(K).

Remark 5.13. For n = 1, S is the system of representatives of Gal(H1/K)/ Gal(H1/H1). i.e.,
S = Gal(H1/K)

P1 = ∑
σ∈Gal(H1/K)

σD1y1 = NormH1/K(y1) = yK (by definition)

so yK ̸∈ pE(H1) ⇐⇒ c(1) ̸= 0. But yK ∈ E(K) hence yK ̸∈ pE(K) ⇐⇒ c(1) ̸= 0.

§6. Properties of Cohomology Classes

The cohomology classes we have just constructed are represented by explicit 1-cocycles:

c(n) : Gal(K̄/K) −→ E[p]

σ 7−→ f (σ) := σ

(
1
p

Pn

)
− 1

p
Pn −

(σ − 1)Pn

p

and
d̃(n) : Gn = Gal(Hn/K) −→ E[p]

σ 7−→ f̃ (σ) := − (σ − 1)Pn

p

Since p is odd, the action of τ ∈ Gal(K/Q) gives direct sum decomposition:

H1(K, E[p]) ∼= H1(K, E[p])+ ⊕ H1(K, E[p])−

Now we would like to know in which eigenspace does the defined cohomology classes c(n)
lies. But before that we recall some standard facts and prove a lemma (6.1) which will be
useful for this task (proposition 6.2).

Recall that there is some −ϵ ∈ {±1}, called the sign of the functional equation, such that

L(E/Q, s) = −ϵL(E/Q, 2 − s)

where L(E/Q, s) is the L-function associated to E over Q. Also recall that if L(E/Q, s) =
∑∞

n=1 anqn then fE(z) = ∑∞
n=1 anqn, q = e2πi is a weight 2 cuspidal eigenform called the

eigenform associated to E. Note that the Atkin-Lehner involution (or Fricke involution) wN
satisfies: wN( fE)(z) = ϵ fE(z) where −ϵ is the sign of the functional equation.

Lemma 6.1. The Atkin-Lehner involution (or Fricke involution) wN satisfies:

τ(zn) = wN(σ(zn)) on X0(N),

for some σ ∈ Gn = Gal(Hn/K) which implies that

τ(yn) = ϵ · σ(yn) + (torsion) in E(Hn).
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Proof. Since wN is an involution, it is sufficient to prove that wN(τ(zn)) = σ(zn). Now

wN(τ(zn)) = wN

(
C
On

, Nn
−1

On

)
=

(
C

Nn
−1 , N−1On

Nn
−1

)
. Now our required σ ∈ Gn is such that the

ideal class [Nn
−1

] ∈ PicOn corresponds to σ under the Artin map isomorphism.

For the second relation, note that for each modular curve X0(N), the cusps 0 and ∞ are
always defined over Q [Cus]. So we have:

τ(xn − ∞) = wN(σ(xn − ∞)) + (wN(∞)− ∞) on J(X0(N))

Now we apply Φ (from equation 3.2) to this and noting that wN, σ, τ commutes with Φ,
wN(∞) = 0 on J(X0(N)), and that wN acts on elliptic curve E via multiplication by ϵ, we get

τ(yn) = ϵ(σ(yn)) + Φ(0 − ∞)

By Manin-Drinfeld theorem, the divisor class (0 − ∞) is a torsion point in J(X0(N)).

Since p > 2, the action of τ ∈ Gal(K/Q) gives us the decomposition

H1(K, E[p]) = H1(K, E[p])+ ⊕ H1(K, E[p])−

H1(K, E)[p] = H1(K, E)[p]+ ⊕ H1(K, E)[p]−

Now we see where as n varies, where does the derivative classes we have defined lies:

Proposition 6.2. (a) The class [Pn] lies in the ϵn = ϵ · (−1) fn eigenspace for τ in
(E(Hn)/pE(Hn))Gn , where fn = |{l prime : l|n}|.

(b) The class c(n) lies in the ϵn-eigenspace for τ in H1(K, E[p]) and the class d(n) lies in
the ϵn-eigenspace for τ in H1(K, E)[p].

Proof. (a) The lift of complex conjugation τ ∈ Gal(Hn/Q) acts on elements σ ∈ Gn by
sending τ−1στ to σ−1. Hence we have στ = σ−1τ. Let us consider:

τ(Pn) = τ( ∑
σ∈S

σDnyn) = ∑
σ∈S

σ−1τ(Dnyn)

where Dn = ∏ℓ|n Dℓ with Dℓ such that (σℓ − 1) · Dℓ = ℓ+ 1 − NormHℓ/H1 . Now compute

(ℓ+ 1−NormHℓ/H1)τ = τ(ℓ+ 1)− ∑
σ∈Gℓ

στ = τ(ℓ+ 1)− τ ∑
σ∈Gℓ

σ−1 = τ(ℓ+ 1−NormHℓ/H1)

This implies that
(σℓ − 1)Dℓτ = τ(σℓ − 1)Dℓ = −σ−1

ℓ (σℓ − 1)τDℓ

so that
(σℓ − 1)(σℓDℓτ + τDℓ) = 0

which means that (σℓDℓτ + τDℓ) = k NormHℓ/H1 for some ℓ ∈ Z.
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By norm relations, NormHℓ/H1(yn) = aℓ · ym ≡ 0 (mod pE(Hn)), hence we have

τ(Pn) = ∑
σ∈S

σ−1τ(∏
ℓ|n

Dℓ)yn

≡ ∑
σ∈S

σ−1(∏
ℓ|n

−σℓDℓ)τyn (mod pE(Hn))

≡ (−1) fn(∏
ℓ|n

σℓ) ∑
σ∈S

σ−1Dn(τ(yn)) (mod pE(Hn))

But τ(yn) = ϵ · σ′(yn) + (torsion) for some σ′ ∈ Gn by lemma 6.1. And by lemma 5.8,
E(Hn)[p] = {0} hence every torsion point in E(Hn) must be in pE(Hn). Therefore

τPn ≡ ϵn(∏
ℓ|n

σℓ)σ
′ ∑

σ∈S
σ−1Dnyn (mod pE(Hn))

But (∏ℓ|n σℓ)σ
′ ∈ Gn and ∑σ∈S σ−1Dnyn is Pn (noting that if s1, · · · sn are coset representa-

tives of quotient of an abelian group then so are s−1
1 , · · · s−1

n ) which is invariant under the
action of Gn modulo pE(Hn). So

τPn ≡ ϵnPn (mod pE(Hn)).

(b) This clearly follows from (a) and by remark 5.11 that the action of τ commutes with
every map in diagram 5.2.

§7. Local triviality of Cohomology Classes

In this section we shall derive conditions for when the cohomology classes c(n) we have
constructed lie in the p-Selmer group.

Recall the fundamental short exact sequence for E/K which gives us the diagram:

0 E(K)
pE(K) H1(K, E[p]) H1(K, E)[p] 0

0 ∏
v∈MK

E(Kv)

pE(Kv)
∏

v∈MK

H1(Kv, E[p]) ∏
v∈MK

H1(Kv, E)[p] 0

δE f

g

δ

Now c(n) ∈ H1(K, E[p]) is in the p-Selmer group (= ker(g ◦ f )) if and only if the reduction
d(n)v of f (c(n)) = d(n) ∈ H1(K, E)[p] is trivial at every prime v.

Our first proposition is that if a place v does not divide n then d(n)v is trivial in H1(Kv, E)[p].
But first we recall a theorem of Lang about algebraic groups:

Theorem 7.1. (Lang) Let A be a smooth, connected, commutative algebraic group over a
finite field F. Then H1(F, A(F)) = 0.
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Proposition 7.2. The class d(n)v is locally trivial in H1(Kv, E)[p] at the archimedean prime
v = ∞ and at all the finite primes v of K which do not divide n.

Proof. Case 1: When v = ∞ then K∞ = C, since K is imaginary quadratic, and hence Galois
cohomology of E is trivial i.e., H1(C, E) = 0.

Case 2: (v, n · N) = 1: d(n) is inflated from a class d̃(n) ∈ H1(Hn/K, E)[p] where Hn/K is
unramified at v. Hence d(n)v lies in the image of the subgroup H1(Knr

v /Kv, E)[p], where Knr
v

is the maximal unramified extension. We are going to prove that this group is trivial when
E has good reduction at v.

Let q be a prime lying under v. Recall that we have an exact sequence

0 −→ E1 −→ E(Kv)
red−→ Ẽ(Fv) −→ 0

where E1 is a pro-q group. Taking Gal(Knr
v /Kv)-cohomology, we get an exact sequence

0 E1(Kv) E(Kv) Ẽ(Fv)

H1(Knr
v /Kv, E1) H1(Knr

v /Kv, E) H1(Fv, Ẽ)

Since E1 is a pro-q group and Gal(Knr
v /Kv) = Ẑ, the profinite completion of Z, we can

deduce that H1(Knr
v /Kv, E)[p] = 0. Hence we have an injection

H1(Knr
v /Kv, E)[p] ↪−→ H1(Fv, Ẽ(Fv))[p]

By using Lang’s theorem we conclude that H1(Fv, Ẽ(Fv)) is trivial and we are done.

Case 3: v ∤ n but v|N:

Consider a Neron model E for E over Ov and let E0 be the connected component of the
identity of E and E/E0 the group of components. By Lang’s theorem (7.1), H1(Fv, E0) = 0.
So we have the injection

H1(Knr
v /Kv, E0) ↪−→ H1(Fv, E/E0)

So to check triviality of d(n)v in H1(Knr
v /Kv, E0), we need to check the triviality of its image

in H1(Fv, E/E0).

Let w be a place of Hn over v. Recall that d(n)v is represented by the cocyle

Gal((Hn)w/Kv) −→ E((Hn)w), γ 7−→ − (γ − 1)Pn

p

where − (γ−1)Pn
p is a combination of conjugates of yn ∈ E(Hn). Now d(n)v ∈ H1(Kv, E)[p] is

killed by p hence in order to know that d(n)v is trivial, it is sufficient to show that the reduc-
tion of yn in E/E0 is killed by a number prime to p. We are going to show that reduction of
yn in E/E0 lies in a subgroup of order prime to p.
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First of all, we deduce from ([GZ86]; §III, 3.1) that the class of Heegner divisor (xn)− (∞)
lies, upto translation by the rational torsion point (0)− (∞), in J(X0(N))0, the identity com-
ponent of the Néron model of the abelian variety J(X0(N)) over Ov. Hence yn, upto transla-
tion by a rational torsion of E , lies in E0. Since E(Q)[p] is trivial by assumption, the rational
torsion point must have order prime to p. Hence the yn’s lies in a subgroup whose image in
E/E0 has order prime to p.

Now we look at places which does divide n.

Proposition 7.3. If n = ℓm and λ = ℓOK, then

d(n)λ is trivial ⇐⇒ Pm ∈ pE((Hm)λm) = pE(Kλ) for one (and hence all) place(s) λm of Hm dividing λ.

In particular taking m = 1, we get d(ℓ)λ is non-trivial ⇐⇒ P1 = yK ̸∈ pE(Kλ). Note that
the latter condition is independent of ℓ, hence we get that the system of cohomology classes
{d(n)λ}n∈NE are "Rigid" in the sense that d(n)λ ̸= 0 implies all other classes are non-trivial.

Proof. We recall from 4.2 that the prime λ splits completely in Hm, each factor λm is totally
ramified in Hn, i.e. λmOHn = (λn)ℓ+1, and Fλn = Fλm = Fλ.

Recall that the cohomology class d(n)λ ∈ H1(Kλ, E)[p] is represented by the cocycle:

Gal(Kλ/Kλ) −→ E(Kλ), σ 7−→ − (σ − 1)Pn

p
.

Since Pn ∈ E(Hn), we have that d(n)λ is trivial on Gal(Kλ/Kλn). Also − (σ−1)Pn
p actually

lives in E(Hn) ⊂ E(Kλn). Hence d(n)λ actually lives in H1(Gℓ, E(Kλn))[p] (noting that
Gal(Kλn /Kλ) = Gal(Kλn /Kλm)

∼= Gℓ).

Since ℓ is a Kolyvagin prime, ℓ ∤ N and hence E has good reduction at ℓ. We know that there
is an exact sequnce of Gℓ-modules

0 −→ E1(Kλn) −→ E0(Kλn)
red−→ Ẽ(Fλn) −→ 0

Since E1(Kλn) is a pro-ℓ group and p ̸= ℓ, we have H1(Gℓ, E1(Kλn))[p] = 0. So we have the
injection:

H1(Gℓ, E(Kλn))[p] ↪−→ H1(Gℓ, Ẽ(Fλ))[p].

Since Gℓ acts trivially on Ẽ(Fλ), we have

H1(Gℓ, Ẽ(Fλ))[p] = Hom(Gℓ, Ẽ(Fλ)[p])

Hence d(n)λ is trivial ⇐⇒ it has trivial image in H1(Gℓ, Ẽ(Fλ))[p] ⇐⇒ (σ−1)Pn
p has trivial

reduction modulo λn for every σ ∈ Gℓ ⇐⇒ the point Qn := (σℓ−1)Pn
p has trivial reduction

modulo λn since Gℓ is cyclic with generator σℓ.

Recall that Pn = ∑σ∈S σDnyn) and (σℓ − 1) · Dℓ = ℓ+ 1 − NormHℓ/H1 , so we have

Qn = ∑
σ∈S

σDm

(
ℓ+ 1

p
yn −

aℓ
p

ym

)
(also using norm relations 4.1)
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and by congruence relations (4.2), we have (denoting
(

Hm/Q
λm

)
by Frob(λm))

ℓ+ 1
p

yn −
aℓ
p

ym ≡ (ℓ+ 1) Frob(λm)− aℓ
p

ym (mod λn)

at all primes λn dividing λ in Hn. For σ ∈ Gal(Hn/K) we conjugate this congruence
(mod σ−1λn) by σ to obtain:

σ

(
ℓ+ 1

p
yn −

aℓ
p

ym

)
≡ σ

(
(ℓ+ 1) Frob(σ−1λm)− aℓ

p

)
ym (mod λn)

but σ Frob(σ−1λm) = σσ−1 Frob(λm)σ so we obtain:

σ

(
ℓ+ 1

p
yn −

aℓ
p

ym

)
≡
(
(ℓ+ 1) Frob(λm)− aℓ

p

)
σym (mod λn)

Hence:

Qn ≡ (ℓ+ 1) Frob(λm)− aℓ
p

Pm (mod λn)

We know by proposition 6.2 that the reduction of Pm modulo λm lies in the ϵm-eigenspace of
Ẽ(Fλ)/pẼ(Fλ) for the action of complex conjugation τ.

Consider the eigenspaces E(Fλ)
+, E(Fλ)

− ⊂ E(Fλ). On the eigenspace Ẽ(Fλ)
+ the au-

tomorphism Frob(λm) acts as the identity: since ℓ is a ’Kolyvagin’s prime’, τ is conju-
gate to Frob(λm) so it has order 2. Hence (ℓ + 1) Frob(λm) − aℓ acts as multiplication by
ℓ + 1 − aℓ, which is the order of Ẽ(Fλ)

+, by the proof of proposition (5.4). Similarly on
Ẽ(Fλ)

−, Frob(λm) acts as minus the identity so that (ℓ+ 1) Frob(λm)− aℓ acts as the multi-
plication by minus the order of Ẽ(Fλ)

−. In any case we conclude that (ℓ+ 1) Frob(λm)− aℓ
kills Ẽ(Fλ).

The reduction of Pm modulo λn lies in Ẽ(Fλ)
ϵm
p

∼= Z/pZ, by proposition (5.4). So the re-
duction Q̃n of Qn is zero ⇐⇒ P̃m/p ∈ Ẽ(Fλ), i.e. P̃m ∈ pẼ(Fλ), which is if and only if
Pm ∈ p(Kλ) since [p] is an isomorphism on E1 (since it is a pro-ℓ group and p ̸= ℓ).

§8. Local Tate duality

In this section we are going to review some basic results from Tate’s local duality which we
will use in order to prove proposition 1.7. We first fix notation:

Oλ a complete discrete valuation ring with maximal ideal m

Fλ := Oλ/m, the residue field which is a finite field of characteristic ℓ

Kλ field of fractions of Oλ

Knr
λ maximal unramified extension of Kλ

g := Gal(Knr
λ /Kλ) is the Galois group of Knr

λ /Kλ isomorphic to Gal(Fλ/Fλ) which is iso-
morphic to profinite completion of Ẑ by sending the generator 1 ∈ Ẑ to the Frobenius
automorphism Frob(λ) ∈ g.
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Let E be an elliptic curve over Kλ with good reduction modulo m. Say Ẽ be the elliptic curve
defined over Fλ obtained by reducing E. We have the exact sequence

0 −→ E1 −→ E(Kλ)
red−→ Ẽ(Fλ) −→ 0 (8.1)

where E1, the kernel of the reduction map is a pro-ℓ group.

Proposition 8.1. Let p be a prime different than ℓ. Then

E(Kλ)/pE(Kλ) ∼= H1(g, E[p]).

Proof. Taking Galois cohomology of the exact sequence 0 −→ Ẽ[p] −→ Ẽ
[p]−→ Ẽ −→ 0 of

g-modules gives the following exact sequence:

0 −→ Ẽ(Fλ)/pẼ(Fλ) −→ H1(g, Ẽ(Fλ)[p]) −→ H1(g, Ẽ(Fλ)[p] −→ 0

By Lang’s theorem (7.1), H1(g, Ẽ(Fλ) = 0 so the middle two terms in above exact sequence
are isomorphic. The proposition follows from the fact that

E(Kλ)/pE(Kλ) ∼= Ẽ(Fλ)/pẼ(Fλ) and E[p] ∼= Ẽ(Fλ)[p].

(These both things follows from the following commutative diagram

0 E(Kλ)[p] Ẽ(Fλ)[p] 0

0 E1(Kλ) E(Kλ) Ẽ(Fλ) 0

0 E1(Kλ) E(Kλ) Ẽ(Fλ) 0

0 E(Kλ)/pE(Kλ) Ẽ(Fλ)/pẼ(Fλ) 0

∼

red

[p] [p]

red

(8.2)

and the fact that E1 in equation 8.1 is pro-ℓ group so [p] is an isomorphism on E1.)

Theorem 8.2. (Tate-local duality). There exists a symmetric, non-degenerate pairing of
Z/pZ-vector spaces:

⟨·, ·⟩ : H1(Kλ, E[p])× H1(Kλ, E[p]) −→ Z/pZ

induced by Weil pairing, cup product, and the invariant map from local class field theory.
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Proof. The (bilinear) Weil pairing E[p]× E[p] −→ µp over Kλ induces a linear map

E[p]⊗ E[p] −→ µp,

which induces a map on cohomology groups for every j ≥ 0

Hj(Kλ, E[p]⊗ E[p]) −→ Hj(Kλ, µp), (8.3)

since Weil pairing is Galois equivariant (or invariant).

Now composing cup product with this map for j = 2 we obtain a pairing:

H1(Kλ, E[p])× H1(Kλ, E[p]) −→ H2(Kλ, µp)

Moreover the invariant map from local class field theory gives a canonical isomorphism:

H2(Kλ, µp) = Br(Kλ)[p]
∼−→ 1

p
Z/Z ∼= Z/pZ.

Now consider the following commutative diagram:

0 E(Kλ)/pE(Kλ) H1(Kλ, E[p]) H1(Kλ, E)[p] 0

0 H1(Kλ, E)[p]∗ H1(Kλ, E[p])∗ E(Kλ)/pE(Kλ)
∗ 0

∼

where ·∗ = HomZ(·, µp(Kλ)) is the Cartier dual. The rows are exact and the middle map is
an isomorphism by Tate local duality. Because of the commutativity of the diagram the first
vertical map is injective, but in fact it also an isomorphism since we have the following:

Lemma 8.3. dimZ/pZ E(Kλ)/pE(Kλ) = dimZ/pZ H1(Kλ, E)[p].

Proof. First note that if M is any discrete g-module then Mg = M{Frob(λ)}, the elements fixed
by Frob(λ) since g is a pro-cyclic group generated by Frob(λ). Now consider the action of
Frob(λ)− 1 on E[p]. We have the following exact sequence of Fp vector spaces

0 −→ ker(Frob(λ)− 1) −→ E[p] −→ E[p] −→ E[p]
(Frob(λ)− 1)E[p]

−→ 0

so we have ker(Frob(λ) − 1) = E[p]{Frob(λ)} and E[p]/(Frob(λ) − 1)E[p] have the same
dimension. Since we have:

E(Kλ)/pE(Kλ) ∼= H1(g, E[p]) =
E[p]

(Frob(λ)− 1)E[p]
and E[p]{Frob(λ)} = Ẽ(Fλ)[p] ∼= E(Kλ)[p],

we find that E(Kλ)/pE(Kλ) and E(Kλ)[p] have the same dimension over Fp.
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Now we check that E(Kλ)[p] and H1(Kλ, E)[p] have same dimension to complete the proof.

Consider the inflation-restriction sequence for Gal(K/Knr) ⊴ Gal(K/K):

0 −→ H1(g, E[p]) −→ H1(K, E[p]) −→ H1(Knr, E[p]){Frob(λ)} −→ H2(g, E[p])

The last group is 0 by Galois cohomology. We also have

0 −→ E(Kλ)/pE(Kλ) −→ H1(Kλ, E[p]) −→ H1(Kλ, E)[p] −→ 0.

Since g ∼= E(Kλ)/pE(Kλ), we have

H1(Kλ, E)[p] ∼= H1(Knr, E[p]){Frob(λ)}

= Hom(Knr, E[p]){Frob(λ)}

= Hom(∆, E[p]){Frob(λ)} (where ∆ is tamely ramified inertia)

= Hom(Zp(1), E[p]){Frob(λ)} (because ∆ ∼= ∏
q ̸=ℓ

Zq(1))

= Hom(µp, E[p]){Frob(λ)}

This last group has the same dimension as Ẽ(Fλ)[p] ∼= E(Kλ)[p] by Weil pairing.

So we have an isomorphism E(Kλ)/pE(Kλ)
∼−→ H1(Kλ, E)[p]∗ and we get

Proposition 8.4. The pairing of (8.3) induces a non-degenerate pairing of Fp-vector spaces

⟨·, ·⟩ : E(Kλ)/pE(Kλ)× H1(Kλ, E)[p] −→ Z/pZ. (8.4)

Remark 8.5. When the p-torsion of E is rational over Kλ there exists an explicit formula for
the pairing ⟨·, ·⟩ of 8.4: Take c1 ∈ E(Kλ)/pE(Kλ) and construct the point

e1 = Frob(λ)
(

1
p

c1

)
− 1

p
c1 in E(Kλ)[p].

Take c2 ∈ H1(Kλ, E[p]) and associate to it the homomorphism ϕ2 : µp −→ E(Kλ)[p] as in the
proof of 8.3. Fix a primitive pth-root ξ of unity in K×

λ and let ϕ2(ξ) = e2 in E(Kλ)[p]. Then:

ξ⟨c1,c2⟩ = {e1, e2},

where {, } is the Weil pairing on E[p] = E(Kλ)[p]. A proof of this construction can be found
in an appendix of [Was89].

§9. Criterion for locally vanishing of Selmer group

In this section we are going to apply proposition 8.4 in the specific local situation which
arises in study of Heegner points: Let K is a quadratic imaginary extension of Q and Kλ is
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the completion of K at the place λ = ℓOK where ℓ ∈ LE is a Kolyvagin prime (so inert in K).
First of all we claim that

Claim: The p-torsion of E is rational over Kλ. i.e., E[p] = E(Kλ)[p].

Proof: Since ℓ is a Kolyvagin prime and τ has order 2, λ splits completely in K(E[p])/K. So
if γ is a prime of K(E[p]) lying above λ, we have Fλ

∼= Fγ, so that

E(Kλ)[p] ∼= E(Fλ)[p] ∼= E(Fγ)[p] ∼= Z/pZ × Z/pZ.

In this situation the spaces involved in the pairing (8.4) have each dimension 2 over Z/pZ:
E(Kλ)/pE(Kλ) is isomorphic to Ẽ(Fλ)/pẼ(Fλ) by diagram 8.2. The latter has dimension
2 because of the above claim. And H1(Kλ, E)[p] is of dimension 2 from non-degeneracy of
the pairing. However we wish to work with spaces of dimension 1, so we shall consider the
action of τ on these spaces.

Lemma 9.1. The eigenspaces (E(Kλ)/pE(Kλ))
± and (H1(Kλ, E)[p])± for Gal(Kλ/Qℓ) =

Gal(K/Q) = {1, τ} each have dimension 1 over Z/pZ.

Proof. For the first one, note that as remarked above, E(Kλ)/pE(Kλ) has dimension 2 and
E(Kλ)[p] also has dimension 2. We have natural injection E(Kλ)[p] ↪−→ E(Kλ)/pE(Kλ) which
turns into isomorphism of vector spaces. Morover we can check that it is an isomorphism
as Gal(Kλ/Qℓ)-modules.

For the second, consider the following Inflation-Restriction sequence for the inertia Iλ :=
Gal(Kλ/Ksep

λ ) ⊴ Gal(Kλ/Kλ) = GKλ

0 −→ H1(Ksep
λ /Kλ, E(Ksep

λ )[p]) Inf−→ H1(Kλ, E[p]) Res−→ H1(Iλ, E[p])GKλ
/Iλ −→ H2(Ksep

λ /Kλ, E[p])

Since Gal(Ksep
λ /Kλ) ∼= Gal(Fλ/Fλ) is a pro-ℓ group, Hi(Ksep

λ /Kλ, E[p]) = 0 for all i ≥ 1.
Hence we have isomorphisms (as Gal(Kλ/Qℓ)-modules)

H1(Kλ, E[p]) ∼= H1(Iλ, E[p])GKλ
/Iλ

∼= Hom(Iλ, E[p]) (since GKλ
and Iλ acts trivially on E[p])

∼= Hom(µp(Kλ), E[p]) (any homomorphism will factor through tame inertia)

From the congruence ℓ+ 1 ≡ 0 (mod p), we get that Fλ contains all the pth-roots of unity.
Since p is odd, by Hensel’s lemma we can lift these roots to Kλ. Morover, since p does not
divide ℓ− 1 and p is odd we have µp(Qℓ) = {1}, which implies

µp(Kλ) = µp(Kλ)
−. i.e., τ acts non-trivially

So we have Hom(µp, E[p]) ∼= E(Kλ)[p] as groups, but with reversed action of τ, i.e.,

H1(Kλ, E)[p]± ∼= Hom(µp, E[p])± ∼= E(Kλ)[p]∓.
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Proposition 9.2. The pairing ⟨·, ·⟩ of (8.4) induces non-degenerate pairings of one dimen-
sional Z/pZ-vector spaces

⟨·, ·⟩± : (E(Kλ)/pE(Kλ))
± × (H1(Kλ, E)[p])± −→ Z/pZ.

In particular if dλ ̸= 0 lies in (H1(Kλ, E)[p])± and sλ ∈ (E(Kλ)/pE(Kλ))
± satisfies ⟨sλ, dλ⟩,

then sλ ≡ 0 (mod pE(Kλ)).

Proof. Let’s choose + eigenspace. The proof for − eigenspace is similar. Suppose ⟨sλ, dλ⟩ =
0 for all dλ ∈ H1(Kλ, E)[p]+. It suffices to show that + and − eigenspaces are orthogonal
to each other (because then we would get that ⟨sλ, dλ⟩ = 0 for all dλ in H1(Kλ, E)[p] and
conclude sλ = 0 from the non-degeneracy of the pairing of (8.4).

Tate’s pairing is Galois equivariant so it satisfies ⟨τ(c1), τ(c2)⟩ = ⟨c1, c2⟩ = τ⟨c1, c2⟩ since τ
acts trivially on H2(Kλ, µp) ∼= Z/pZ and the result follows.

Now we shall apply the preceding considerations to classes which belong to the p-Selmer
group of E, but for the proof we need to recall a result from global class field theory. Recall
that for a field L the Brauer group is defined as

Br(L) := H2(L, L̄×).

Theorem 9.3. There exists the following short exact sequence:

0 −→ Br(K) −→
⊕

v
Br(Kv) −→

Q

Z
−→ 0

where the first map is a product of restriction maps and the second one is the summation
over the local invariants invv : Br(Kv)

∼−→ Q/Z and possibly inv∞ : Br(R)
∼−→ 1

2Z/Z.

Proposition 9.4. Assume that a class d ∈ H1(Kλ, E)[p]± is locally trivial at all places v ̸= λ,
but that dλ ̸= 0 in H1(Kλ, E)[p]±. Then for any class s ∈ Sel(p)(E/K)± ⊂ H1(Kλ, E[p]))± we
have sλ = 0 in H1(Kλ, E[p]))±.

Proof. By the definition of p-Selmer group, the restriction sλ ∈ H1(Kλ, E[p])± of s lies in
(E(Kλ)/pE(Kλ))

±. So by lemma (9.1) we only need to check that ⟨sλ, dλ⟩ = 0 to conclude
the proof (since the spaces H1(Kλ, E)[p]± are one dimensional and dλ ̸≡ 0, it spans the whole
space and by non-degeneracy of pairing, we will be done).

To do this, lift d ∈ H1(K, E)[p] to an element c ∈ H1(K, E[p]), which is well defined modulo
E(K)/pE(K). Consider the global pairing

⟨·, ·⟩K : H1(K, E[p])× H1(K, E[p]) −→ H2(K, µp) = Br(K)[p]
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induced by cup product and Weil pairing, which is constructed in the same way as local
pairing was constructed in (8.2) (but in this case K is a number field). The image ⟨s, c⟩K lies
in Br(K)[p]. By theorem (9.3) we deduce that if we push ⟨s, c⟩K to Q/Z we obtain zero, i.e.

∑
v

invv(⟨sv, cv⟩) = 0,

But we already know from the hypothesis that ⟨sv, cv⟩ = 0 for every v ̸= λ since dv = 0 in
H1(Kv, E[p]). So this implies that ∑v invv(⟨sv, cv⟩) = ⟨sλ, cλ⟩ = ⟨sλ, dλ⟩ = 0.

§10. Finishing up: Computation of the Selmer Group

In this section, we shall use the cohomology classes d = d(n) ∈ H1(K, E)[p], constructed
in section (5), to bound the order of Sel(p)(E/K), but before we need a few more Galois
cohomology computations. Call L := K(E[p]) and recall that we have assumed:

G := Gal(L/K) = Gal(Q(E[p])/Q) ∼= GL2(Z/pZ).

where the equality comes from fact that K and Q(E[p]) are linearly disjoint over Q.

Proposition 10.1. Hn(G, E[p]) = 0 for all n ≥ 0 and restriction induces an isomorphism:

Res : H1(K, E[p]) ∼−→ H1(L, E[p])G = HomG(Gal(Q/L), E[p]).

where the equality comes from the fact that Gal(Q/L) acts trivially on E[p].

Proof. G ∼= GL2(Z/pZ) has a central subgroup Z isomorphic to (Z/pZ)× which acts as
homotheties on the torsion points E[p]. Since p is odd Z ̸= {1}, so that EZ

p = H0(Z, E[p]) =
0, moreover since Z has order p − 1 which is prime to p we also have Hi(Z, E[p]) = 0 for all
i > 0. We can now consider the Hochshild-Serre spectral sequence

Hm(G/Z, Hn(Z, E[p])) =⇒ Hm+n(G, E[p])

to conclude that Hn(G, E[p]) = 0 for all n ≥ 0.

On the other hand, by Inflation-Restriction exact sequence for G ⊴ Gal(K/K), we have

0 H1(G, E[p]) H1(K, E)[p] H1(L, E[p])G H2(G, E[p])Inf Res

The vanishing of Hn(G, E[p]) for n = 1, 2 gives us the isomorphism in the proposition.

From the last proposition we deduce that there exists a pairing: [·, ·] : H1(K, E[p])×Gal(Q/L) −→
E[p] which satisfies for all σ ∈ G:

[s, σ(ρ)] = σ([s, ρ]) for all s ∈ H1(K, E[p]), ρ ∈ Gal(Q/L)

Now let S ⊂ H1(K, E[p]) be a finite subgroup (=finite dimensional vector space over Z/pZ).
We shall eventually apply this reasoning to S = Sel(p)(E/K). Let

GalS(Q/L) := {ρ ∈ Gal(Q/L) : [s, ρ] = 0 for all s ∈ S}
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and let LS be the fixed field of GalS(Q/L). We claim that LS is a finite normal extension of L.

Let s ∈ S. Then by proposition 10.1 s defines a G-module homomorphism Gal(Q/L) −→
E[p]. Since E[p] is finite, its kernel is some Gal(Q/Ls) where Ls/L is finite normal extension.
Now take LS to be the compositum of all fields Ls where s ∈ S. Then LS/L is finite since S is
finite and normality is clear.

Lemma 10.2. There is an induced pairing

[·, ·] : S × Gal
(

LS/L
)
−→ Ep

which is non-degenerate and which induces an isomorphism of G = Gal(L/K) modules:

Gal(LS/L) ∼−→ HomGrp(S, Ep) = HomFp(S, Ep),

as well as an ismorphism of Gal(K/Q)-modules:

S ∼−→ HomG(Gal(LS/L), E[p]).

Proof. We have the following injections, which follow from the definition of LS and (10.1):

Gal(LS/L) ↪−→ Hom(S, Ep) and S ↪−→ HomG(Gal(LS/L), E[p]). (10.1)

In order to show that they are actually isomorphisms, let us compute their dimensions as Fp

vector spaces. Let r = dimFp(S). Then by equation (10.1), Gal(LS/L) is a G-submodule of
Hom(S, E[p]) ∼= E[p]r. Note that E[p] is a simple G-module as any proper subspace of E[p] is
not stable under action of G ∼= GL2(Z/pZ), hence E[p]r is semi-simple. As any submodule
of a semi-simple module is again semi-simple, we have an isomorphism

Gal(LS/L) ∼−→ E[p]s for some s ≤ r. (10.2)

Also it implies that

HomG(Gal(LS/L), E[p]) ∼= (Z/pZ)s as HomG(E[p], E[p]) ∼= (Z/pZ))

(Since G ∼= GL2(Z/pZ) = Aut(E[p]), the only automorphisms of G which commutes with
all the other elements of G are those which corresponds to scalar matrices).

This group contains S ∼= (Z/pZ)r by (10.2), so we must have s ≥ r which implies s = r.

Recall from ([Sil86], Theorem X.4.2) that for any elliptic curve E/K, Sel(p)(E/K) is finite.
Now we would like to apply lemma (10.2) to S = Sel(p)(E/K) ⊂ H1(K, E[p]).

For simplicity of notation let M = LS and H = Gal(M/L) = Gal(LS/L). Since we even-
tually want to get to the proof of proposition (2.3), let yK ∈ E(K) (defined in equation 3.3),
have infinite order and let it not be divisible by p in E(K)/E(K)tors, δyK ∈ Sel(p)(E/K) is its
non-zero image inside the p-Selmer group.
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Let I be the subgroup of H which fixes the subfield L( 1
p yK). We have the following:

Q

K

L = K(E[p])

L( 1
p yK)

M

G ∼= Aut(E[p])

H ∼= Hom(Sel(p)(E/K), E[p])

E[p]

I

In this diagram, first of all note that L( 1
p yK) is independent of choice of 1

p yK and Gal(L( 1
p yK)/L) ∼=

E[p] because all the Galois conjugates of 1
p yK are 1

p yK + P for P ∈ E[p]. Also since we have

taken M = LS where S = Sel(p)(E/K) which contains image of E(K)/pE(K) under Kummer
map, it follows that M contains 1

p P for every P ∈ E(K). In particular L( 1
p yK) ⊂ M.

Let τ be a fixed lifting of complex conjugation in Gal(M/Q) and let H+ and I+ denote the
+1 eigenspaces for τ (acting by conjugation) in H and I.

Lemma 10.3. H+ = {(τh)2 : h ∈ H}, I+ = {(τi)2 : i ∈ I}, and H+/I+ ∼= Z/pZ.

Proof. Let us define Hτ+1 := {(τ · h)h : h ∈ H}. Then clearly Hτ+1 ⊂ H+ because

τ · ((τ · h)h) = ττhτ−1hτ−1 = h(τhτ−1) = (τhτ−1)h = (τ · h)h

Since action of τ is a linear map on Z/pZ vector space H, H+ is a subspace. Also since p
is odd, 2 is an automorphism of H (and of H+). Hence for any h ∈ H+, h1/2 ∈ H+. Now,
(τ · h1/2)h1/2 = h1/2h1/2 = h so that h ∈ Hτ+1. Then we have

H+ = Hτ+1 = {(τh)2 : h ∈ H}, since τ−1 = τ

The same reasoning works for I+. Finally H+/I+ = (H/I)+ = E[p]+ ∼= Z/pZ.

Proposition 10.4. Let s ∈ Sel(p)(E/K)±. Then the following are equivalent:

(a) [s, ρ] = 0 for all ρ ∈ H,

(b) [s, ρ] = 0 for all ρ ∈ H+,

(c) [s, ρ] = 0 for all ρ ∈ H+ − I+,

(d) s = 0.
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Proof. Clearly (d) ⇐⇒ (a) by lemma 10.2 and clearly (a) =⇒ (b) =⇒ (c). So it sufficies
to prove that (c) =⇒ (a).

(c) =⇒ (a) First suppose that s ∈ Sel(p)(E/K)+. By 10.2, s defines a G-homomorphism
φs : H+ −→ E[p]+. Let us assume that s vanishes on H+ − I+. This implies that it van-
ishes on the entire group H+ (using the fact that H+/I+ ∼= Z/pZ from lemma 10.3).
Also s ∈ Sel(p)(E/K) so it induces a G-homomorphism φ̃s : H −→ E[p] by (10.2), which
maps H+ −→ E[p]+ and H− −→ E[p]−. If s vanishes on H+, then φ̃s(H) ⊂ E[p]−, but
φ̃s(H) is a G-submodule of the simple G-module E[p], so if φ̃s(H) ̸= E[p] we must have
φ̃s(H) = 0, which implies (a). The same reasoning is valid for s ∈ Selp(E/K)− with + and
− reversed.

Remark 10.5. The same proof will show that the following statements are equivalent:

(a) [s, ρ] = 0 for all ρ ∈ I,

(b) [s, ρ] = 0 for all ρ ∈ I+.

Now let λ be a prime of K which does not divide N · p. Then λ is unramified in M/K; we
assume further that λ splits completely in L/K and let λM be a prime of M above λ. Let
FrλM (or FrλM/λ) be the Frobenius element of λM in Gal(M/K). Because λ splits completely
in L FrλM fixes L. i.e.,FrλM ∈ H = Gal(M/L) ∼= Hom(Sel(p)(E/K), E[p]). Let

Frob(λ) := {σ · FrλM : σ ∈ G}

G-orbit of λM where G acts on H by conjugation (see notation on page 1). Because G is
abelian Frob(λ) depends only on λ. By definition we will write [s, Frob(λ)] = 0 if and only
if [s, ρ] = 0 for every ρ ∈ Frob(λ).

Proposition 10.6. For s ∈ Sel(p)(E/K) ⊂ H1(K, E[p]) the following are equivalent:

(a) [s, FrλM/λ] = 0.

(b) [s, Frob(λ)] = 0.

(c) sλ = 0 in H1(Kλ, E[p]).

Proof. ((a) ⇐⇒ (b)) This is because pairing in lemma 10.2 satisfies: for all σ ∈ G

[s, σ(ρ)] = σ([s, ρ]) for all s ∈ H1(K, E[p]), ρ ∈ Gal(Q/L)

((a) ⇐⇒ (c)) Let Pλ ∈ E(Kλ)/pE(Kλ) be the element whose image is sλ ∈ Sel(p)(E/K)
through the Kummer map. By definition of M, 1

p Pλ ∈ E(MλM) and

[s, FrλM/λ] = FrλM/λ

(
1
p

Pλ

)
−
(

1
p

Pλ

)
in E(MλM)

Hence [s, FrλM/λ] = 0 ⇐⇒ 1
p Pλ ∈ E(Kλ) ⇐⇒ Pλ ∈ pE(Kλ) ⇐⇒ condition (c) holds.
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We now finally turn to the proof of proposition (1.7). Recall that the Heegner point yK = P1
lies in the ϵ-eigenspace for complex conjugation on E(K)/pE(K), where −ϵ is the sign of
L(E/K, s). Hence δ(yK) ∈ Sel(p)(E/K)ϵ.

Lemma 10.7. Sel(p)(E/K)−ϵ = 0.

Proof. Let s ∈ Sel(p)(E/K)−ϵ. To show that s = 0, by remark 10.5 it suffices to show that
[s, ρ] = 0 for every ρ ∈ H+ − I+. By lemma (10.3) an element of H+ is of the form (τh)2 for
some h ∈ H.

Let ℓ be a prime which is unramified in the extension M/Q and such that there is a factor
λM above it in M, whose Frobenius element FrλM/λ equals τh in Gal(M/Q). The density of
such primes is positive by Chebotarev density theorem and so we can always find a prime
satisfying that condition. Claim: λ = ℓOK is inert in K and λ splits completely in L.

Q

K

L′

L = K(E[p])

M

ℓ

λ

λL′

λM

Fℓ

Fℓ

Fℓ2

In above figure L′ is the field fixed by τh. It is the maximal totally real field contained in L.
Since L′ and K are linearly disjoint over Q and λL′ is inert in L, we have that Fλ = Fℓ2 i.e., λ
is inert in K. Also because ℓ splits completely in L′/Q, λ splits completely in L.

The Frobenius substitution FrλM/λ = Fr2
λM/ℓ = (τh)2, so to prove that [s, ρ] = [s, FrλM/λ] = 0

if suffices to show that sλ ≡ 0 in H1(Kλ, E[p]) by proposition (10.6). Let c(ℓ) ∈ H1(K, E[p])
and d(ℓ) ∈ H1(K, E)[p] be the cohomology classes constructed in section 5. By proposition
(6.2) both classes lie in the −ϵ eigenspace of τ and by proposition 7.2 d(ℓ) is locally trivial
except possibly at λ. Claim: d(ℓ)λ ̸= 0 in H1(K, E)[p].

By proposition (7.3) d(ℓ)λ = 0 ⇐⇒ yK = P1 ∈ pE(Kλ) ⇐⇒ the prime λ splits completely
in the extension L( 1

p yK). Since FrλM/λ = ρ is not in I+ = I ∩ H+ by hypothesis, this splitting
does not occur.

So we can apply proposition (9.4) to deduce that s ∈ Sel(p)(E/K)−ϵ is such that s = 0.

Now we put together some results (most of which we have already proved) for our conve-
nience to use it in proposition (10.9).
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Proposition 10.8. Assume that yK (defined in (3.3)) is not divisible by p in E(K)/E(K)tors.
Let ℓ be a prime which is unramified in the extension M/Q and such that there is a factor
λM above it in M, whose Frobenius element equals τh in Gal(M/Q), for some h ∈ H. Then
λ = ℓOK is inert in K and λ splits completely in L = K(E[p]). The following are equivalent:

(a) c(ℓ) ≡ 0 in H1(K, E[p]),

(b) c(ℓ) ∈ Sel(p)(E/K) ⊂ H1(K, E[p]),

(c) Pℓ is divisible by p in E(Hℓ),

(d) d(ℓ) ≡ 0 in H1(K, E)[p],

(e) d(ℓ)λ ≡ 0 in H1(Kλ, E)[p],

(f) P1 = yK is locally divisible by p in E(Kλ),

(g) (τh)2 lies in the subgroup I+ = H+ ∩ I of H+.

Proof. ((a) ⇐⇒ (b)) By proposition 6.2 c(ℓ) ∈ H1(K, E[p])−ϵ and Sel(p)(E/K)−ϵ = 0 by
lemma 10.7.

((a) ⇐⇒ (c)) This is just a special case of proposition (5.12(a)).

((a) ⇐⇒ (d)) Follows from proposition (5.12(b)) and the fact that (E(K)/pE(K))−ϵ = 0
because it injects in Sel(p)(E/K)−ϵ.

((d) ⇐⇒ (e)) Since d(ℓ) is locally trivial except perhaps at λ (by proposition 7.2). So if
d(ℓ)λ is trivial then d(ℓ) ∈ Sel(p)(E/K)−ϵ which is 0 by lemma (10.7).

((e) ⇐⇒ ( f )) This follows immediately from proposition 7.3.

(( f ) ⇐⇒ (g)) 1
p yK ∈ E(Kλ) ⇐⇒ λ splits completely in L( 1

p yK)/K ⇐⇒ Frobenius

element FrλM/λ fixes L( 1
p yK) ⇐⇒ FrλM/λ = Fr2

λM/ℓ = (τh)2 is actually in I.

Now we are ready to prove proposition 1.7. In view of lemma 10.7 we only need to prove:

Proposition 10.9. Sel(p)(E/K)ϵ ∼= Z/pZ · δyK.

Proof. Let s ∈ Sel(p)(E/K)ϵ. To show that s is a multiple of δyK it suffices to show that
[s, ρ] = 0 for all ρ ∈ I, for then

s ∈ HomG(H/I, E[p]) = HomG(E[p], E[p]) ∼= Z/pZ · δyK

since E[p] is a simple G-module. By remark 10.5 it is enough to show that [s, ρ] = 0 for all
ρ ∈ I+. By lemma 10.3 these elements have the form ρ = (τi)2 for some i ∈ I.

Let ℓ′ be a prime such that c(ℓ′) is non-trivial in H1(K, E[p]). By proposition (10.8 (g)) we
may obtain such an ℓ′ by imposing the condition that its Frobenius substitution is conjugate
to τh ∈ Gal(M/Q), where h ∈ H and (τh)2 ̸∈ I+. Then c(ℓ′) is not in Sel(p)(E/K) by (10.8
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(b)). Let L′ = LS be the extension constructed for S = ⟨c(ℓ′)⟩ as in lemma (10.2). It is easy
to see that if P′ ∈ E(K) is the element such that δ(P′) = c(ℓ′), then L′ = L( 1

p P′). Also
Gal(L′/L) ∼= E[p] and L′/L is disjoint from the extension M/L. A prime ideal ℓOK = λ in
K, which splits completely in L, is split completely in L′ if and only if L′

λℓ′
= Kλ for every

prime λℓ′ lying above λ in L′.

Now let ℓ be a prime whose Frobenius substitution is conjugate to τi in Gal(M/Q) for some
i ∈ I, and to τ j in Gal(L′/Q) for some j ∈ Gal(L′/L) satisfying (τ j)2 ̸= 1. These conditions
can be satisfied simultaneously because M and L′ are linearly disjoint over L.

Claim: The class d(ℓℓ′) ∈ H1(K, E) is locally trivial for all places v ̸= λ, but that d(ℓℓ′)λ ̸= 0.

Let λ′ = ℓ′OK then local triviality at primes v ̸= λ, λ′ comes from proposition (7.2). Since
i ∈ I, the global class c(ℓ) is zero by proposition (10.8(a)), and so by condition 10.8(c), Pℓ
is divisible by p in E(Hℓ). Hence it follows directly from proposition (7.3) that d(ℓℓ′)λ′ =
0. Again by proposition 7.3 d(ℓℓ′)λ is trivial if and only if Pℓ′ is locally divisible by p in
E(Kλ). But this implies that λ splits completely in L′, or equivalently that (τ j)2 = 1 which
contradicts the hypothesis on j.

So d(ℓℓ′) satisfies the hypothesis of proposition (9.4) and using it we conclude that sλ = 0.
By proposition 10.6, we get that

[s, ρ] = [s, (τi)2] = 0.

Since this process can be done for any ρ ∈ I+ we have shown that s(I+) = s(I) = 0.
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