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ABSTRACT
This report is part of a year-long reading project on the topic “Heegner Points” under the
guidance of Dr. Somnath Jha, IIT Kanpur. The Birch and Swinnerton-Dyer(BSD) conjecture
is one of the central problems in the Theory of Elliptic Curves. This was formulated in
1960’s based on the numerical evidence found by Bryan Birch and Peter Swinnerton Dyer.
Although many were skeptical of it at the time, a major breakthrough came in 1970’s when
John Coates and Andrew Wiles proved it in a certain special case. This generated a lot of
interest and soon, another major breakthrough came through the works of Gross-Zagier and
Kolyvagin. In this report, we will cover the prerequisites required to understand this work.
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§1. Introduction

Let L be an number field and E/L be an elliptic curve (EC) and E(L) ⊂ E(L̄) is the group of
L-rational points. A fundamental result in the study of ECs is the Mordell-Weil theorem.

Theorem 1.1. (Mordell-Weil theorem) The group E(L) is finitely generated abelian group.

By the structure theorem of finitely generated abelian groups, we have the decomposition

E(L) ∼= Zr ⊕ E(L)tors

Here r is called the (algebraic) rank of E(L) and E(L)tors is the torsion subgroup of E(L). The
E(L)tors part is well understood. In fact, when L = Q, we have the following deep theorem:

Theorem 1.2. (Mazur Torsion theorem, 1978) Let E/Q be an elliptic curve. Then E(Q)tors is
one of the following forms:

• E(Q)tors ∼= Z
NZ

with 1 ≤ N ≤ 10 or N = 12.

• E(Q)tors ∼= Z
2Z
× Z

2NZ
with 1 ≤ N ≤ 4.

In other words, #E(Q)tors is uniformally bounded by 16 for L = Q. For other number fields,
a similar result holds true which was fully proven by Merel in 1995. On the other hand, the
rank is very mysterious and there are many unsolved conjectures about it even when L = Q.
Most prominent of those is the Birch and Swinnerton-Dyer (BSD) conjecture which was first
made in 1965 [BSD65] and made precise in the subsequent years. In order to state it, first we
define L-series associated to E/L.

Definition 1.3. If E has good reduction at P, we define,

LP(E/L, T) := 1− aPT + qPT2 where aP := qP + 1− #Ẽ (FP)

LP(E/L, T) is called the local L-series of E at P. If E has bad reduction at P, we define

LP(E/L, T) :=


1− T if E has split multiplicative at P.
1 + T if E has non-split multiplicative at P.
1 if E has additive reduction at P

(1.1)

The (global) L-series of E/L is defined by the Euler product

L(E/L, s) := ∏
P

LP

(
E/L, q−s

P

)−1
(1.2)

The analytic rank of E/L is defined as the order of vanishing of L(E/L, s) at s = 1.

Using Hasse-Weil bound, L(E/L, s) is easily seen to be an analytic function on Re(s) > 3
2 .
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[BSD Conjecture] Let E/Q be an elliptic curve and L(E/Q, s) be its L-function. Then

1. Algebraic rank of E is equal to its analytic rank. i.e.,

rank(E(Q)) = ords=1 L(E/Q, s)(= r say) (1.3)

2. The leading term in the Laurent expansion of L(E/Q, s) at s = 1 is given in terms of
the arithmetic invariants of E. More precisely,

Lr(E/Q, 1)
r!

=
#X(E/Q)ΩERE

(#E(Q)tors)2 ∏
p

cp where (1.4)

(a) X(E/Q) is the Tate-Shafareviech group of E,

(b) RE is the regulator of E,

(c) ΩE is a certain integer multiple of the least real period of E, and

(d) local indicies cp’s are called the Tamagawa factors (or fudge factors) of E, defined by

cp := [E(Qp) : E0(Qp)]

where E0(Qp) is the subgroup of E(Qp) consisting of those points whose reduc-
tion modulo p (on a minimal model of E) is non-singular.

It is remarkable to note that when this conjecture first appeared in 1965, it was not even
known whether L(E/Q, s) is defined at s = 1 (this is now known as a consequence of the
Modularity theorem, fully proven in 2000’s). Even now, it is not known whether X(E/Q)
is finite or not. Also note that the (2) part has striking resemblance with another well known
formula in number theory:

[Analytic Class Number Formula] For K a number field, the Dedekind zeta function ζK(s)
has meromorphic continuation to all of C with only one simple pole at s = 1 with residue

lim
s→1

(s− 1)ζK(s) =
2r1 · (2π)r2 · RegK ·hK

wK ·
√
|DK|

(1.5)

where hK is the class number, RegK is the regulator of K, r1- number of real embeddings, 2r2-
number of non-real embeddings, wk- number of roots of unity in K.

In this report, we will start with defining the regulator, the conductor, and the Tate-Shafarevich
group of an EC (section 2). Then we will restrict our attention to the so-called CM ECs: ECs
over C with endomorphism ring strictly larger than Z. These curves have many beautiful
properties (section 4). Then we will prove the analytic continuation the L-function of a CM
EC, a result which was proved by Deuring in 1940’s. At the end, we will define Heegner
points on ECs and briefly outline the work to be done in the next semester (section 5).
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§2. Arithmetic Invariants of an Elliptic Curve

In this section, we first define the regulator and conductor of an EC. Then we define the Tate-
Shafarevich group. But in order to properly understand the Tate-Shafarevich group, we will
first need to understand the Weil-Châtelet group of an EC (2.3). We will assume familarity
with elementary group cohomology in (2.3) and (2.4) and will be based on [Sil86], Ch X.

§§2.1. The Regulator

The regulator of an elliptic curve is an important arithmetic invariant, which can be com-
pared to the regulator of a number field. In order to define it, we first recall the properties
of the canonical height function:

Notation: Let E be an elliptic curve over a number field K with algebraic closure K̄.

Theorem 2.1. The canonical height ĥ of Neron and Tate on E satisfies the following:

1. ĥ(P + Q) + ĥ(P−Q) = 2ĥ(P) + 2ĥ(Q) ∀P, Q ∈ E(K̄). (Parallelogram Law)

2. ĥ([n]P) = n2ĥ(P) ∀P ∈ E(K̄), ∀n ∈ Z.

3. ĥ gives rise to the Neron-Tate height pairing

〈, 〉 : E(K̄)× E(K̄) −→ R, 〈P, Q〉 = ĥ(P + Q)− ĥ(P)− ĥ(Q)

4. ĥ(P) ≥ 0 for all P ∈ E(K̄), and ĥ(P) = 0 ⇐⇒ P is a torsion point.

By Mordell-Weil Theorem, E(K)⊗R is a finite dimensional vector space. And we can con-
sider E(K)/E(K)tors as a complete lattice in E(K)⊗R. The regulator of E/K is the volume of
a fundamental domain of E(K)/E(K)tors w.r.t the Neron-Tate height pairing. More formally,

Definition 2.2. The RE/K regulator of E/K is defined as

RE/K := det
(〈

Pi, Pj
〉)

1≤i≤r,1≤j≤r

where P1, P2, . . . , Pr ∈ E(K) be a set of generators for E(K)/E(K)tors.

§§2.2. The Conductor

The conductor of E/K is an arithmetic invariant which encodes the primes primes of bad
reduction. Unfortunately, understanding it completely requires the knowledge of Néron
models which is a difficult topic. But we can state the final result:

Definition 2.3. The conductor of E/K is an integral ideal defined by

NE/K := ∏
v
p

fv
v
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where v runs over all finite places and for a finite place v, fv is defined as

fv :=


0 if E has good reduction at v
1 if E has multiplicative reduction at v
2 + δv if E has additive reduction at v

where δv is a measure of the “wild ramification" in the action of the inertia group Iv on T`(E).
If pv - 2, 3 then δv = 0. (see [Sil86], C§16)

§§2.3. The Weil-Châtelet Group

The only ineffective part in determination of the Mordell-Weil group of an EC is the determi-
nation of the Weak Mordell-Weil group which basically depends on knowing the existence
(or non-existence) of rational points on certain curves associated to the EC.

Definition 2.4. Let E/K be an elliptic curve. A (principal) homogeneous space for E/K is a
smooth curve C/K together with a simply transitive algebraic group action of E on C de-
fined over K. In other words, a homogeneous space for E/K is a pair (C, µ), where C/K is a
smooth curve and µ : C× E −→ C is a morphism over K having the following properties:

1. µ is a group action.

2. For all p, q ∈ C there is a unique P ∈ E such that µ(p, P) = q.

Definition 2.5. Two homogeneous spaces C/K and C′/K for E/K are equivalent if there is an
isomorphism θ : C −→ C′ defined over K that is compatible with the action of E on C and
C′. i.e., the following diagram commutes

C× E C

C′ × E C′
θ×id θ

The equivalence class containing E/K, acting on itself by translation, is called the trivial class.
The set of equivalence classes of homogeneous spaces for E/K is called the Weil-Châtelet
group for E/K denoted by WC(E/K). (see theorem 2.7 for the group structure)

Here are some interesting results about homogeneous spaces and the Weil-Châtelet group.

Theorem 2.6. Let C/K be a homogeneous space for E/K. Then

C/K is in the trivial class ⇐⇒ C(K) is not the empty set.
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Theorem 2.7. There is a natural bijection WC(E/K) −→ H1(Gal(K/K), E).

§§2.4. The Tate-Shafarevich Group

Let K be a number field, MK be a complete set of inequivalent absolute values on K, Kv is
the completion of K at v ∈ MK, and E/K, E′/K are two isogenous ECs with φ : E −→ E′ an
isogeny. We start with a short exact sequence (SES) of G = Gal(K̄/K)-modules

0 E[φ] E(K̄) E′(K̄) 0
[φ]

Using Galois Cohomology, we obtain the following long exact sequence (LES) (connecting
homomorphism is δE)

0 E(K)[φ] E(K) E′(K)

H1(G, E[φ]) H1(G, E(K̄)) H1(G, E′(K̄))

φ

We extract the following SES, which is called the Kummer sequence for E/K:

0 E′(K)
φ(E(K)) H1(G, E[φ]) H1(G, E(K̄))[φ] 0

δE ψ

Remark 2.8. Note that by 2.7, the last term in above SES may be identified with the φ-torsion
in the Weil-Châtelet group WC(E/K). Now the above SES has a very elegant interpretation:

Determining the group E′(K)/φ(E(K)) ⇐⇒ knowing its image under δE

⇐⇒ knowing the kernel of the map ψ

⇐⇒ knowing whether a K-rational point exists or
not on each of the homogeneous spaces

This last equivalence is a consequence of the theorem 2.6. Note that (theoretically) it is easy
to determine all the homogeneous spaces of a given EC and also easy to determine a point
in E′(K)/φ(E(K)) given a K-rational point on some homogeneous space.

So the only thing remains is to determine whether a K-rational point exists or not on a homo-
geneous space. Recall the Hasse-Minkowski theorem which is an example of the local-global
principle. Here also, to introduce local fields into the picture, we do following: For each
v ∈ MK we fix an extension of v to K̄, which serves to fix an embedding K̄ ⊂ K̄v and a
decomposition group Gv ⊂ Gal(K̄/K). Replacing K to Kv in above, we get

0 E′(Kv)
φ(E(Kv))

H1(Gv, E[φ]) H1(Gv, E(K̄v))[φ] 0δ
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The natural inclusions Gv ⊂ Gal(K̄/K) and E(K̄) ⊂ E(K̄v) give restriction maps on coho-
mology. Thus we get the following commutative diagram

0 E′(K)
φ(E(K)) H1(G, E[φ]) WC(E/K)[φ] 0

0 ∏
v∈MK

E′(Kv)

φ(E(Kv))
∏

v∈MK

H1(Gv, E[φ]) ∏
v∈MK

WC(E/Kv)[φ] 0

δE

δ

Definition 2.9. Let φ : E/K → E′/K be an isogeny. The φ-Selmer group of E/K is the sub-
group of H1 (Gal(K̄/K), E[φ]) defined by

S(φ)(E/K) = ker

{
H1 (Gal(K̄/K), E[φ]) −→ ∏

v∈MK

WC (E/Kv)

}
(2.1)

The Shafarevich-Tate group of E/K is the subgroup of WC(E/K) defined by

X(E/K) = ker

{
WC(E/K) −→ ∏

v∈MK

WC (E/Kv)

}
(2.2)

Meaning of these groups: By theorem 2.6, the Selmer group contains those homogeneous
spaces which has atleast one Kv-rational point for each valuation v and the Tate-Shafarevich
group contains those homogeneous spaces in the Selmer group which does not have a K-
rational point. So, the Tate-Shafarevich group measures the extent of failure of the local-
global principle. This group is known to be non-trivial for a family of elliptic curves (see
[Sil86], X.6.5).

The following is a fundamental conjecture about X(E/K).

(Conjecture) The Tate-Shafarevich group of an elliptic curve is finite.
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§3. Class Field Theory

We know that Gal(Q(ζn)/Q) ∼= (Z/nZ)×. In particular, it is abelian. The Kronecker-Weber
theorem gives a partial converse to this fact:

Theorem 3.1. If K/Q is an abelian extension, then K ⊂ Q(ζn) for some n.

One can similarly ask about characterization of abelian extensions of other fields of arith-
metic interest and this is answered in Class Field Theory(CFT), although very abstractly. In
the next section, we will see how the Theory of Complex Multiplication can be used to obtain
explicit description of abelian extensions of quadratic imaginary fields. Our main reference
for this section is [Cox03], chapter VII.

Let L/K be a finite Galois extension of number fields, P|p be a prime extension, and κ =
OK/p, λ = OL/P are the residue fields. Recall from Algebraic Number Theory that we
have a surjective homomorphism

DP � Gal (λ/κ) , σ 7−→ σ̃

where DP ⊂ Gal(L/K) is the decomposition group associated to P. The kernel of this map
is the inertia group associated to P, denoted by IP.

Now suppose that P|p is unramified. Then IP = 0, i.e., the above map is an isomorphism.
Since the residue fields are finite, λ/κ is cyclic, and therefore there exists an unique element(

L/K
P

)
∈ DP, called the Artin symbol, which maps to the Frobenious automorphism of λ/κ.

Morover, if L/K is abelian then the Artin symbol for P only depends on the prime below, p
and not on P. Therefore, it is denoted by

(
L/K
p

)
.

§§3.1. Main theorems of CFT

For a number field K, let IK and PK denote respectively the group of non-zero fractional and
principal-fractional ideals of K.

Definition 3.2. A modulus in K is a formal product m = ∏p p
np over all primes p, finite or

infinite, where np ≥ 0 and at most finitely many are nonzero, np ≤ 1 if p is real infinite, and
np = 0 if p is complex infinite.

Given a modulus m, we can write it as m = m0m∞. We define

IK(m) := {a ∈ IK : a is relatively prime to m}
PK,1(m) := 〈αOK : α ∈ OK and α ≡ 1 (mod m0), σ(α) > 0〉

Definition 3.3. A subgroup H ⊂ IK(m) is called a congruence subgroup for m if it satisfies

PK,1(m) ⊂ H ⊂ IK(m)

and the quotient IK(m)/H is called a generalized ideal class group for m.
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Let L/K be an abelian extension and m be a modulus divisible by all primes of K, finite or
infinite that ramify in L.

Definition 3.4. Then the homomorphism (extends by multiplicativity)

Φm,L/K : IK(m) −→ Gal(L/K), p 7−→
(

L/K
p

)
is called the Artin map for L/K and m. (omit L/K if clear from context)

The following result regarding the Artin map is called the Artin Reciprocity Theorem:

Theorem 3.5. 1. The Artin map Φm is surjective.

2. If the exponents of the finite primes m are sufficiently large, then ker(Φm) is a congru-
ence subgroup for m, and hence Gal(L/K) is a generalized ideal class group for the
modulus m.

The above theorem is true for many moduli m but there is one modulus which is better than
all the others, called the conductor of L/K:

Theorem 3.6. (Conductor Theorem) There is a modulus f = f(L/K) such that

1. A prime of K, finite or infinite, ramifies in L ⇐⇒ it divides f.

2. Let m be a modulus divisible by all primes of K which ramify in L. Then ker(Φm) is a
congruence subgroup for m ⇐⇒ f|m.

Theorem 3.7. (Existence Theorem): Let m be a modulus of K, and let H be a congruence
subgroup for m, i.e., PK,1(m) ⊂ H ⊂ IK(m). Then there is a unique Abelian extension L of
K, all of whose ramified primes, finite or infinite, divide m, such that kernel of Artin map
Φm : IK(m) −→ Gal(L/K) is H.

Given any modulus m, the Existence theorem shows that there is a unique abelian extension
Km of K such that PK,1(m) = ker(ΦKm/K,m). Km is called the ray class field for the modulus m.

Thus the ray class field Km is characterized by the property that it is an abelian extension of
K and primes which split completely in it are precisely the primes in PK,1(m).

Example 3.1. The ray class field for the modulus m = 1 is called the Hilbert Class Field H of K
characterized by the property that it is everywhere unramified maximal abelian extension.

Theorem 3.8. Let p be a prime in K. Then
(

L/K
p

)
= 1 ⇐⇒ p is principal.
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§§3.2. The Idelic Approach to CFT

This subsection is based on [Sil94], chapter II.3.

Let K be a number field, and for each absolute value v on K, let Rv be the ring of integers of
Kv if v is non-archimedean, and let Rv = Kv otherwise. The idele group of K is the group

A∗K = ∏′

v∈MK

K∗v (3.1)

where prime indicates that the product is restricted relative to the Rv ’s. This means that
an element s ∈ ∏ K∗v in the unrestricted product is in A∗K if and only if xv ∈ R∗v for all but
finitely many v.

Definition 3.9. Let s ∈ A∗K be an idele. We define the ideal of s to be the fractional ideal of K
given by (s) := ∏p p

ordp sp .

If L/K is a finite extension, then there is a natural norm map from A∗L to A∗K. This is a
continuous homomorphism

NL
K : A∗L −→ A∗K, x = (xw) 7−→

∏
w|v

NLw
Kv

xw


. The idelic formulation of class field theory is given in terms of the reciprocity map de-
scribed in the following theorem.

Theorem 3.10. Let K be a number field, and let Kab be the maximal abelian extension of K.
There exists a unique continuous homomorphism

A∗K −→ Gal
(

Kab/K
)

, s 7−→ [s, K]

with the following property: Let L/K be a finite abelian extension, and let s ∈ A∗K be an idele
whose ideal (s) is not divisible by any primes that ramify in L. Then

[s, K]|L =

(
L/K
(s)

)
where

(
L/K
·

)
is the Artin map.

The homomorphism [·, K] is called the reciprocity map for K. The reciprocity map has the
following additional properties:

1. The reciprocity map is surjective, and K∗ is contained in its kernel.

2. The reciprocity map is compatible with the norm map,

[x, L]|Kab =
[
NL

Kx, K
]

for all x ∈ A∗L

3. Let p be a prime ideal of K, let Iab
p ⊂ Gal

(
Kab/K

)
be the inertia group of p, let πp ∈ K∗p

be a uniformizer at p, and let L/K be any ab. extension that is unramified at p. Then

[πp, K]|L = (p, L/K) = Frobenius for L/K at p and
[
R∗p , K

]
= Iab

p
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§4. Complex Multiplication

Let E/C be an elliptic curve. We begin by recalling an important theorem about End(E).

Theorem 4.1. ([Sil86], VI.5.2) Let ω1 and ω2 be generators for a lattice Λ associated to E.
Then either End(E) = Z or the field Q(ω2/ω1) is an imaginary quadratic extension of Q,
and End(E) is isomorphic to an order in Q(ω1/ω2).

Elliptic curves of latter type are our topic of discussion. We define them formally.

Definition 4.2. E/C is said to have complex multiplication (or CM) if Z ( End(E).

We will see many nice properties of a CM elliptic curve E in section 4.1. Section 4.2 states
the Main Theorem of Complex Multiplication which will be used in section 4.3 to associate
a Grössencharacter to E, which in turn will be used to prove the analytic continuation of the
L-series of E in section 4.4. This chapter is based on [Sil94], chapter II.

§§4.1. Properties of CM Elliptic Curves

Let ELL(O) denote the isomorphism classes of elliptic curves E/C with End(E) ∼= O.

Let K be a imaginary quadratic field and OK its ring of integers. In our discussion, we will
restrict ourselves to only those EC which have CM byOK i.e., the maximal order. This is not
very serious restriction:

Theorem 4.3. Let E have CM by an order O in K. Then it is isogenous to an EC E′ which
have CM by OK. i.e., there is an isogeny E −→ E′.

Proof. Let Λ = Zω1 + Zω2 be a lattice for E. Then K = Q(ω2/ω1) by theorem 4.1. Let
λ ∈ Λ be non-zero. Then λ−1Λ ⊂ K hence fractional ideal of K. So WLOG, we can assume
Λ ⊂ OK. Clearly we have isogeny C/Λ −→ C/OK, z 7−→ z. Take E′ = C/OK.

Let CL(OK) denotes the ideal class group of OK. Our first result is that ELL(OK) is finite.

Theorem 4.4. 1. Let Λ be a lattice with EΛ ∈ ELL(OK) and let a, b ∈ JK.

(a) aΛ = {a1λ1 + . . . + arλr : ai ∈ a, λi ∈ Λ} is a lattice in C.

(b) The elliptic curve EaΛ satisfies End(EaΛ) ∼= OK.

(c) EaΛ
∼= EbΛ ⇐⇒ a = b in CL(OK).

Hence there is well-defined action of CL(OK) on ELL(OK) given by a ∗ EΛ = Ea−1Λ.

2. This action is simply transitive. In particular, | CL(OK)| = | ELL(OK)|.



§4 Complex Multiplication 11

The proof of this theorem essentially depends on the fact that any isogeny φ : C
Λ1
−→ C

Λ2
between complex ECs is of the form φ(z) = αz for some α ∈ C with αΛ1 ⊂ Λ2. Hence

End(EΛ) ∼= {α ∈ C : αΛ ⊆ Λ}

Because the action is simple transitive, there is a well defined map

F : Gal(K/K) −→ CL(RK)

characterized by the condition that (where E ∈ ELL(OK) is some chosen EC)

σ(E) = F(σ) ∗ E for all σ ∈ Gal(K/K).

This map is a homomorphism (easy) and independent of chosen EC E in ELL(RK) (hard).
By studying this map F (using Class Field Theory), we are able to prove the next result which
says that if E has CM by OK then it is defined over a number field, more precisely over the
Hilbert class field H of K (3.1). In particular, it also says that j(E) is an algebraic number
(which is an amazing result in itself). j-invariants of EC by CM are called singular modulli.

Theorem 4.5. Let E/C has EM by OK. Then K(j(E)) is the Hilbert class field H of K.

The next result says that the coordinates of torsion points can be used to generate abelian
extensions of H (not of K). The proof of this essentially depends on the fact that all endo-
morphisms of E are defined over H and that E[m] is a free OK/mOK-module of rank 1.

Theorem 4.6. ([Sil94], II.2.3) Let
L = K(j(E), Etors)

be the field generated by the j-invariant of E and the coordinates of all of the torsion points
of E. Then L is an abelian extension of K(j(E)).

To generate abelian extensions of K, we need to tweak the coordinates of points in Etors. For
this purpose, we introduce the Weber function.

Definition 4.7. For an elliptic curve E/C, choose a lattice A and an isomorphism

f : C/Λ −→ E(C) z 7−→ (℘(z, Λ),℘′(z, Λ))

then the Weber function h( f (z)) is defined by

h( f (z)) :=


g2(Λ)2

∆(Λ)
℘(z, Λ)2 if g3(Λ) = 0

g3(Λ)
∆(Λ)

℘(z, Λ)3 if g2(Λ) = 0
g2(Λ)g3(Λ)

∆(Λ)
℘(z, Λ) otherwise.

(4.1)

where ∆(Λ) = g2(Λ)2 − 27g3(Λ)3 6= 0 is the usual modular discriminant.
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Notation: E[a] = {P ∈ E : [α]P = 0∀α ∈ E} is called the group of a-torsion points of E.

The next result is one of the central theorems in the Theory of Complex Multiplication. It is
an analogue of the classical Kronecker-Weber theorem (3.1).

Theorem 4.8. ([Sil94], II.5.6) Let E has CM by OK, and let h( f (z)) be the Weber function as
defined above. Let c be an integral ideal of OK. Then the field

K(j(E), h(E[c]))

is the ray class field of K modulo c.

Proof. (Sketch) Let L = K(j(E), h(E[c])) = H(h(E[c])). We want to prove that(
L/K
p

)
= 1 ⇐⇒ p ∈ PK,1(c)

Suppose p = µOK ∈ PK,1(c) is of degree 1. Then by 3.8,
(

H/K
p

)
= 1. Using CFT, we can find

π ∈ OK such that p = πOK and reduction of [π] modulo p, [̃π] = ϕp is pth-power Frobenius

map. Using properties of reduction map and the Weber function, we prove that
(

L/K
p

)
= 1.

Suppose
(

L/K
p

)
= 1. Then

(
H/K
p

)
= 1. Hence again we have π ∈ OK such that p = πOK

and [̃π] = ϕp. Again, using properties of reduction map and the Weber function, we can find
ξ ∈ O× s.t. [π − ξ] annhilates E[c]. Hence ξ−1π ≡ 1 mod c and p = πOK = ξ−1πOK.

One of the remarkable properties of CM elliptic curves is that their j-invariant is integral.

Theorem 4.9. (II.6.1) Let E/C be an EC with CM. Then j(E) is an algebraic integer.

Proof. (Sketch) Define the following:

Dn :=
{(

a b
c d

)
∈ M2(Z) : ad− bc = n

}
Sn :=

{(
a b
0 d

)
∈ M2(Z) : ad = n, d > 0, 0 ≤ b < d

}
(j ◦ α)(τ) := j

(
aτ + b
cτ + d

)
for α =

(
a b
c d

)
∈ M2(Z) with det(α) > 0

Fn(X) := ∏
α∈Sn

(X− j ◦ α) = ∑
m

smXm

Then we can prove the following series of statements:

1. Claim 1: sm is a modular function for SL2(Z). Hence sm ∈ C[j].

2. Claim 2: The Fourier expansion of sm has coefficients in Z. Hence sm ∈ Z[j].
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3. By Claim 2, ∏α∈Sn(X− j ◦ α) = Fn(j, X) where F(Y, X) ∈ Z[Y, X].

4. If n is not a perfect square, then the polynomial Hn(X) = Fn(X, X) is non-constant and
has leading coefficient ±1.

Now if E has CM by full ring OK, then we can find an isogeny whose degree is not perfect
square. Using point 4, integrality of j(E) is proved. For arbitrary orders, we prove that j(E)
is integral over Z[j(E′)] where E′ has CM by OK and use transitivity.

Remark: Ramanujan calculated (without calculator) that

eπ
√

163 = 262537412640768743.999999999999250072597 . . . (known as Ramanujan’s Contant)

which is almost an integer. This can be explained as follows: Since Q(
√
−163) has class

number 1 hence j
(

1+
√
−163
2

)
∈ Z. Also, recall that j(τ) has the q-expansion

j(q) =
1
q
+ 744 + 196884q + 21493760q2 + · · · where q = e2πiτ

If we substitute τ = (1 +
√
−163)/2, then

q = −e−π
√

163 ≈ −3.809 · 10−18

is very small. Thus the main term in j(q) will be 1/q which means that 1/q should be
"almost" an integer. Also all the other terms with positive power of q will be very small
meaning j(τ) is almost an integer.

§§4.2. The Main Theorem of Complex Multiplication

Let x ∈ A∗K be an idele and let R = OK. If a is any (non-zero) fractional ideal of K, we define
xa to be the product (x)a. Using the equality (x)P = (x)RP = xPRP, we see that

(xa)P = (x)aRP = xPaRP = xPaP

The following natural maps are isomorphism of abelian groups ([Sil94], II.8.1):

K
a
∼=
⊕
P

KP

aP
and

K
xa
∼=
⊕
P

KP

xPaP

We define the multiplication-by-x map on K/a to be multiplication of the P-primary compo-
nent by xP i.e., it is defined by the commutativity of the following diagram:

K
a

K
xa

⊕
P

KP

aP

⊕
P

KP

xPaP

x

∼ ∼

(tP) 7−→(xPtP)

Now we are ready to state the main theorem of CM. It gives an analytic description of of the
action of Aut(C) on E(C). It is called so because we can deduce theorem 4.8 from it. Also
it will help us associate a Grössencharacter to E (theorem 4.14) which will help us prove the
analytic continuation of L-function of E (theorem 4.21).
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Theorem 4.10. (Main Theorem of CM) Let σ ∈ Aut(C) and s ∈ A∗K, an idele of K satisfying
[s, K] = σ|Kab . Fix a complex analytic isomorphism

f : C/a ∼−→ E(C)

where a is a fractional ideal of K. Then there exists a unique complex analytic isomorphism

f ′ : C/s−1a
∼−→ Eσ(C)

(depending on f and σ) so that the following diagram commutes:

K/a K/s−1a

E(C) Eσ(C)

s−1

f f ′

σ

§§4.3. The Associated Grössencharacter

Definition 4.11. A Grössencharacter on a number field L is a continuous homomorphism

ψ : A∗L −→ C∗

with the property that ψ(L∗) = 1. It is said to be unramified at P if ψ(R∗P) = 1.

Let E/L be an EC with CM by the ring of integers OK of K, and assume that L ⊃ K. In the
next theorem, we take our first step in defining the Grössencharacter.

Theorem 4.12. Let x ∈ A∗L be an idele of L, and let s = NL
K(x) ∈ A∗K. Then there exists a

unique α = αE/L(x) ∈ K∗ with the following two properties:

1. αOK = (s), where (s) ⊂ K is the ideal of s.

2. The following diagram commutes

K/a K/a

E(Lab) E(Lab)

αs−1

f f

[x,L]

for any fractional ideal a ⊂ K and any analytic isomorphism f : C/a −→ E(C).
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Proof. Let L′ = L (Etors ). Since j(E) ∈ L, it follows from 4.8 and 4.6 resp. that

Kab ⊂ L′ ⊂ Lab

Choose an automorphism σ ∈ Aut(C) such that σ|Lab = [x, L]. Then by (3.10), we have
σ|Kab = [s, K]. So applying the main theorem of CM (4.10), we find an analytic isomorphism
f ′ : C/a→ E(C) and a commutative diagram as in 4.10.

Now Eσ = E, since σ fixes L. In particular, C/a ∼= K/s−1a. Hence ∃β ∈ K∗ such that
βs−1a = a. Our commutative diagram then becomes

K/a K/a

E(C) E(C)

βs−1

f f ′′

σ

Note that f ′′ ◦ f−1 is an automorphism of E, say f ′′ = [ξ] ◦ f for some ξ ∈ O∗K. Now set
α = ξβ and use the facts that σ|Lab = [x, L] and Etors ⊂ E

(
Lab), we get

K/a K/a

E(Lab) E(Lab)

αs−1

f f

[x,L]

which is exactly (ii). Further, we have an equality of ideals

αs−1a = βs−1a = a, so αOK = (s)

This proves that α satisfies both (i) and (ii), which completes the proof of the existence. It
can be showed that such α is unique and independent of the choice of f .

The above theorem gives us a well-defined map

αE/L : A∗L −→ K∗ ⊂ C∗

which is clearly a homomorphism. However, it is easy to see that αE/L (L∗) 6= 1, so αE/L is
not a Grössencharacter. More precisely, if β ∈ L∗ and xβ ∈ A∗L is the corresponding idele,
then

[
xβ, L

]
= 1 (because L∗ is in the kernel of [·, L]). Then it is easy to see that (using the

formula NL
K(α) = ∏w|v NLw

Kv
(α) for any valuation v on K)

αE/L
(
xβ

)
= NL

Kβ for all β ∈ L∗.

But we very close. We can tweak the function αE/L to obtain a Grössencharacter (theorem
4.14). Before moving on, we first recall a criterion for good reduction.

Theorem 4.13. [Sil86],VII.7.1 (Criterion of Neron-Ogg-Shafarevich) Let K be a local field
and E/K be an elliptic curve. Then E has good reduction at K ⇐⇒ Iab

v acts trivially on E[m]
for infinitely many integers m ≥ 1 that are relatively prime to char(k).
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Theorem 4.14. Let
αE/L : A∗L −→ K∗

be the map described in theorem 4.12. For any idele s ∈ A∗K, let s∞ ∈ C∗ be the component
of s corresponding to the unique archimedean absolute value on K. Define a map

ψE/L : A∗L −→ C∗, ψE/L(x) = αE/L(x)NL
K(x−1)∞

1. ψE/L is a Grössencharacter of L.

2. Let P be a prime of L. Then ψE/L is unramified at P ⇐⇒ E has good reduction at P.

Proof. (a) It is clear that ψE/L is a homomorphism. We saw above that if β ∈ L∗, then
αE/L

(
xβ

)
= NL

Kβ. On the other hand, untwisting the definitions we find

NL
K
(
xβ

)
∞ = ∏

τ:L↪→C
τ|κ=1

βτ = NL
Kβ

Therefore ψE/L(xβ = 1. This holds for all β, so ψE/L(L∗) = 1.

First we verify that αE/L is continuous. Fix an integer m ≥ 3. By 4.6, L(E[m]) ⊂ Lab. Let

Bm = [·, L]−1(Gal(L̄/L(E[m])) ⊂ A∗L

be the open subgroup (open because reciprocity map is continuous). Let

Wm :=
{

s ∈ A∗K : sP ∈ (OK)
∗
p and sp ≡ 1 mod m(OK)p for all p

}
(open because (OK)

∗
p is open)

Um := Bm ∩
{

x ∈ A∗L : NL
Kx ∈Wm

}
(open because NL

K : A∗L → A∗K is continuous)

We are going to prove the Claim: αE/L(x) = 1 for all x ∈ Um.

Let x ∈ Um, α = αE/L(x), and fix an analytic isomorphism f : C/a ∼−→ E(C). Then for any
t ∈ m−1a/a we have f (t) ∈ E[m], so

f (t) = f (t)[x,L] = f
(

αNL
Kx−1t

)
= f (αt) since t ∈ m−1a/a and

(
NL

Kx
)
p
∈ (1 + m(OK)p) ∩ (OK)

∗
p for all p

Since f is an isomorphism, multiplication by α fixes m−1a/a or, equivalently,

(α−1)m−1a ⊂ a =⇒ (α− 1)OK ⊂ mOK =⇒ α ∈ OK and α ≡ 1 (modmOK)

On the other hand, for any prime p of K we have

ordp α = ordp

(
NL

Kx
)
p

(by 4.12(i))

= 1 (since the p-component of NL
Kx ∈Wm is a unit.)
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This holds for all p, so α ∈ O∗K. But α ≡ 1(modmOK) from above, so the only possibility is
α = 1 (using m ≥ 3). This proves our claim. Hence,

ψE/L(x) = NL
K

(
x−1
)

∞
for all x ∈ Um

proving that ψE/L is continuous on Um. Therefore ψE/L is continuous on all of A∗L.

(b) Let Iab
P ⊂ Gal(Lab/L) be the inertia group for P. Then

[
R∗P, L

]
= Iab

P by 3.10. Let m ∈ Z

with P - m. We know from 4.6 that E[m] ⊂ E(Lab), so Iab
P will act on E[m]. Now

Iab
P acts trivially on E[m] ⇐⇒ f (t)[x,L] = f (t) for all x ∈ (OK)

∗
P and all t ∈ m−1a/a

⇐⇒ f
(

αE/L(x)
(

NL
Kx−1

)
t
)
= f (t) for all x ∈ (OK)

∗
P and all t ∈ m−1a/a.

We make two observations. First,

ψE/L(x) = αE/L(x) for all x ∈ (OK)
∗
P

since x ∈ (OK)
∗
P are all 1 for P|∞. Second, the multiplication by NL

Kx−1 induces the identity
map on m−1a/a. This follows from a technical lemma ([Sil94], II.9.3) and the assumption
that P - m. Hence we find

Iab
P acts trivially ⇐⇒ f (ψE/L(x)t) = f (t) for all x ∈ (OK)

∗
P and all t ∈ m−1a/a

⇐⇒ ψE/L(x) ≡ 1 (modmOK) for all x ∈ (OK)
∗
P, since f : m−1a/a ∼→ E[m]

Combining this with the criterion of Néron-Ogg-Shafarevich (4.13), we get

E has good redn. at P ⇐⇒ ∃ infinitely many m with P - m s.t. ψ̇E/L(x) ≡ 1 (modmOK) ∀x ∈ (OK)
∗
P

⇐⇒ ψE/L(x) = 1 for all x ∈ (OK)
∗
P (since above is true for infinitely many m)

And by definition this means that ψE/L is unramified at P.

§§4.4. The L-Series Attached to a CM Elliptic Curve

Let L be a number field and E/L be an EC with CM by OK.. In this section, we prove
the analytic continuation (4.21) of the L-series of E. This is done is a slightly unusual way:
We prove that L(E/L, s) is equal to a certain Dirichlet series whose analytic continuation is
already known (4.16) and then conclude the analytic continuation of L(E/L, s).

Definition 4.15. Let ψ : A∗L −→ C∗ be a Grössencharater and P a prime of L. We define

ψ(P) :=

{
ψ(. . . , 1, 1, π, 1, 1, . . .) if ψ is unramified at P
0 otherwise

The Hecke L-series attached to the Grössencharater ψ is defined by the Euler product

L(s, ψ) = ∏
P

(1− ψ(P)q−s
P )−1
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Theorem 4.16. Let L(s, ψ) be the Hecke L-series attached to the Grössencharacter ψ. Then
L(s, ψ) has an analytic continuation to the entire complex plane. Further, there is a functional
equation relating the values of L(s, ψ) and L(N − s, ψ) for some real number N = N(ψ).

Now we set on to find the relation between elliptic curve invariants and its associated
Grössencharacter. First, we prove the following proposition.

Proposition 4.17. Assume that L ⊃ K and let P be a prime of L at which E has good reduc-
tion, let Ẽ be the reduction of E modulo P, and let

φP : E −→ Ẽ be the associated qP-power Frobenius map, and ψE/L : A∗L −→ C∗

be the Grössencharacter (4.14) attached to E/L. Then the following diagram commutes:

E E

Ẽ Ẽ

[ψE/L(P)]

φP

Remark: We have ψE/L(P) = αE/L(P) ∈ OK, so [ψE/L(P)] ∈ End(E).

Proof. Let x = (. . . , 1, 1, π, 1, 1, . . .) ∈ A∗L where P = πOL. Then as we just remarked,

ψE/L(P) = ψE/L(x) = αE/L(x) ∈ OK

The commutative diagram in 4.12 used to define αE/L tells us that

f (t)[x,L] = [ψE/L(x)] f
(

NL
Kx−1t

)
for all t ∈ K/a

Fix some m ∈ Z with P - m. Then ([Sil94], lemma II.9.3) says that
(
NL

Kx−1) t = t for all
t ∈ m−1a/a, so we get

f (t)[x,L] = [ψE/L(x)] f (t) for all t ∈ m−1a/a

Now we have [x, L] =
(

Lab/L
P

)
from 3.10 (iii), so [x, L] mod P is φP. Hence we get,

φP( f̃ (t)) = ˜f (t)[x,L] =
[

˜ψE/L(x)
]

f̃ (t) for all t ∈ m−1a/a

As t varies over m−1a/a, f (t) varies over all of E[m]. Let L′ = L(E[m]) and P′|P be a prime
extension. By [AEC VII.3.1], (where k′ is the residue field of (OL′)P′)

E(L′P′)[m] −→ Ẽ(k′)

is injective. Since L′ ⊂ L′P′ , |E(L′)[m]| = m2, and |Ẽ(k′)| ≤ m2, we get that above map is

bijection of m-torsion points. Hence ˜f (m−1a/a) is all of Ẽ[m].
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Since this is true for all m ∈ Z with m - P, and since an endomorphism of Ẽ is determined
by its effect on torsion (or even on `-primary torsion for a fixed prime ` [AEC III.7.4]), we

conclude that φP =
[

˜ψE/L(x)
]
.

Now we give some properties of endomorphisms of ECs and give corollary of above.

Theorem 4.18. 1. ([Sil94], II.1.5) If E is an EC with CM by OK, then ∀α ∈ OK, the endo-
morphism [α] : E −→ E has degree |NK

Q(α)|.

2. ([Sil94], II.4.4) Let E be an EC with good reduction at prime P, then

deg(φ) = deg(φ̃) for any φ ∈ End(E),

where φ̃ : Ẽ −→ Ẽ is the reduction of φ modulo P.

Corollary 4.19. 1. qP = NL
QP = NK

Q (ψE/L(P)),

2. #Ẽ (FP) = NL
QP+ 1− ψE/L(P)− ψE/L(P),

3. aP = ψE/L(P) + ψE/L(P).

Proof. (a) We compute

NL
QP = deg φP = deg ˜[ψE/L(P)] from 4.17

= deg [ψE/L(P)] from 4.18 (ii)

= NK
Q (ψE/L(P)) from 4.18 (i)

(b) Similarly, we compute

#Ẽ (FP) = # ker (1− φP) = deg (1− φP)

= deg
[
1− ˜ψE/L(P)

]
from 4.17

= deg [1− ψE/L(P)] from 4.18(ii)

= NK
Q (1− ψE/L(P)) from 4.18 (i)

= (1− ψE/L(P))
(

1− ψE/L(P)
)

= 1− ψE/L(P)− ψE/L(P) + NL
QP from (a)

(c) Obvious from (a), (b) and the definition of aP.

Now we prove the analytic continuation of L(E/L, s) by relating it to Hecke L-series. But
first we recall some results about reduction of ECs.

Theorem 4.20. ([Sil86], VI.5.5) Let F be a local field and E/F be an elliptic curve.
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1. Let F′/F be a finite extension. If E has either good or multiplicative reduction over F,
then it has the same reduction type over F′.

2. Then E has potential good reduction ⇐⇒ its j-invariant j(E) ∈ OF.

Theorem 4.21. (Deuring) Let E/L be an EC with CM by the ring of integers OK of K.

1. Assume K ⊂ L. Let ψE/L : A∗L −→ C∗ be the Grössencharacter attached to E/L. Then

L(E/L, s) = L(s, ψE/L)L(s, ψE/L).

2. Suppose K 6⊂ L, and let L′ = LK and ψE/L′ be the Grössencharacter attached to E/L′.
Then L(E/L, s) = L(s, ψE/L′).

Proof. By 4.9 and 4.20, we get that E has no multiplicative reduction. Hence E has only good
or additive reduction. Now suppose E has good reduction at P. Then

LP(E/L, T) = 1− aPT + qPT2

= 1−
(

ψE/L(P) + ψE/L(P)
)

T +
(

NK
QψE/L(P)

)
T2 (by 4.19)

= (1− ψE/L(P)T)
(

1− ψE/L(P)T
)

On the other hand, (4.14 b) says that ψE/L is unramified at P ⇐⇒ E has good reduction at
P, and the same is true for ψE/L. Thus

ψE/L(P) = ψE/L(P) = 0 if E has bad reduction at P

so the formula given above for LP(E/L, T) is also true for primes of bad reduction. Therefore

L(E/L, s) = ∏
P

LP

(
E/L, q−s

P

)−1
= ∏

P

(
1− ψE/L(P)q−s

P

)−1 (
1− ψE/L(P)q−s

P

)−1

= L (s, ψE/L) L
(
s, ψE/L

)
The part (2) can be also proved in a similar way.

Now we give the explicit analytic continuation of the L-function L(E/L, s) when L = Q.

Corollary 4.22. L(E/Q, s) extends to an entire function on C with functional equation

Λ(E/Q, s) = wΛ(E/Q, 2− s)

where
Λ(E/Q, s) := (2π)−sΓ(s)Ns/2L(E/Q, s),

Γ is the Gamma-function, and w ∈ {±1} is called the sign of the functional equation.

The sign of the functional equation will play an important role in the later sections.



§5 Future Work 21

§5. Future Work

We resume from where we left off in the introduction. So around 1970’s, L(E/Q, s) was
known to be defined at s = 1 only for CM ECs (theorem 4.22). So naturally, mathematicians
first tried to prove BSD for CM ECs and John Coates and Andrew Wiles succeeded at it:

Theorem 5.1. (Coates-Wiles, 1978) Let E/Q be an elliptic curve having complex multiplica-
tion. Then L(E, 1) 6= 0 =⇒ rank(E(Q)) = 0.

Soon, another major breakthrough came through the collaboration of Benedict Gross and
Don Zagier. They studied the so-called Heegner points on ECs which we will formally define
in section 5.4. But first some preliminaries in sections 5.1 and 5.2. Heegner points have an
interesting history which we will see in section 5.3. In section 5.5, we will give the statement
of the theorems of Gross-Zagier and Kolyvagin.

§§5.1. Modular Curves

The main reference for this section is [DS05], Ch II.

LetH := {τ ∈ C : Im τ > 0} denote the Poincare upper half plane.

Definition 5.2. For N ∈ Z≥1, we define

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0(mod N)

}
called the Hecke congruence subgroup of level N.

We define Y0(N) := Γ0(N)\H, the set of orbits of the action of Γ0(N) on H. Let H∗ :=
H∪P1(Q) be the completion ofH, where P1(Q) = Q∪ {∞}.

We topologize H∗ as follows: A basic open set about a point of H is an open disc wholly
withinH, and a basic open set about ∞ is

NM := {τ ∈ H : Im τ > M} for each positive real number M.

If x = p/q ∈ P1(Q) is rational, a basic open set about x is of the form D ∪ {x}, where D
is an open disc in H of positive radius r and center x + ir. The resulting topology on H∗ is
Hausdorff,H is an open subset and Γ acts continuously.

Definition 5.3. X0(N) = Γ0(N)\H∗ is called the modular curve of level N.

Theorem 5.4. X0(N) = Γ0(N)\H∗ is a compact, connected, and Hausdorff space.

Morever, X0(N) can be given complex charts which makes it into a Riemann surface and this
Riemann surface can be realized as the set of complex points of a projective curve defined
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over Q. Infact, there is an equation, called the modular equation, given by FN(j, jN) = 0 where
j(z) is the modular j-invariant and jN(z) := j(Nz) with FN(u, v) ∈ Z[u, v]. And

Z0(N) : FN(u, v) = 0 (5.1)

is an irreducible plane model for X0(N). FN also occured in the proof of the integrality of
j-invariant of CM ECs (theorem 4.9).

Also Y0(N) ⊂ X0(N) is also a Riemann surface (as X0(N)\Y0(N) is finite hence closed).
Y0(N) has another interpretation which will be useful later:

Y0(N) = {(E, φ) upto isomorphism : E/C is an EC and φ ⊂ E is a cyclic subgroup of order N}
= {φ : E −→ E′ upto isomorphism : φ an isogeny with ker(φ) cyclic of order N}

where isomorphisms are defined in the obvious way.

§§5.2. Weil Curves and the Modularity Theorem

Let E/Q be an EC and L(E/Q, s) = ∑n ann−s be its L-series. Let fE(τ) = ∑∞
n anqn where

q = e2πiτ. If fE is a cusp form of weight 2 then E is called a modular elliptic curve or a Weil
curve. The following theorem gives conditions for cusp forms to arise this way.

Theorem 5.5. Let f be a modular cusp form of weight 2 for the group Γ0(N). Assume further
that f is a normalized newform and that f has rational Fourier coefficients. Then there exists
an elliptic curve E defined over Q such that f = fE.

In other direction, we have the following famous result which also gives the analytic contin-
uation of L(E/Q, s) to all to the whole complex plane.

Theorem 5.6. (Modularity Theorem) Every elliptic curve Q is a Weil curve.

The following version of Modularity theorem is often useful.

Theorem 5.7. (Modularity Theorem, [DS05], VII.7.2) Let E be an elliptic curve over Q. Then
for some positive integer N there exists a surjective morphism over Q of curves

ΦN,E : X0(N) −→ E(C)

The map ΦN,E is called a modular parametrization of E. The positive integer N can be taken
to be the conductor of E.

§§5.3. The Congruent Number & The Class Number 1 Problems

An amature German mathematician named Kurt Heegner in his [Hee52] paper was inter-
ested in solving an special case of the ancient Congruent number problem (CNP). Along the
way, he also solved the famous Gauss’ Class number 1 problem. Sadly, his solution to the
Gauss’ problem wasn’t accepted at the time due to an alleged gap. It was only later, when
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Harold Stark [Sta66] and Alan Baker [Bak71] independently solved it in 1966, Stark went
back to the Heegner’s proof and realised that it was (almost) correct.

Also later, Bryan Birch realized that while solving the CNP, Heegner had unknowingly
found a remarkable way to explicitely construct certain rational points on certain elliptic
curves which he called “Heegner Points” [Bir75]. Birch generalised the Heegner’s results
and formulated them in modern language (as points on modular curves). With N Stephens,
he also did an extensive numerical computations of Heegner points on the family of curves
y2 = x3 − 1728e3 [BS81] and formulated a conjecture about Heegner points (see section 5.5).

Even though Heegner did not used elliptic curves in his paper, all of this was possible be-
cause of a relation between the CNP and elliptic curves which we now describe.

Definition 5.8. An integer n is called congruent if it is the area of some right triangle all of
whose sides are rational numbers.

[Congruent Number Problem] Given a positive integer n, determine if it congruent or not.

Theorem 5.9. n is congruent ⇐⇒ rank of the elliptic curve En : y2 = x3 − n2x is positive.

Heegner proved the following result in his paper [Hee52].

Theorem 5.10. Let p ∈ Z≥1 be a prime number. If p ≡ 5 or 7(mod8) (resp. p ≡ 3 or 7(mod
8)) then p (resp. 2p) is congruent.

§§5.4. Heegner Points

Let ω ∈ H is an imaginary quadratic number. Then ω satisfies an equation

Aω2 + Bω + C = 0

where (A, B, C) = 1. Denote the discriminant of ω as ∆(ω) := B2 − 4AC and let K be
the imaginary quadratic field (IQF) Q(ω). Also, fix a positive integer N. There are several
equivalent ways of defining Heegner points but we choose the following:

Definition 5.11. Let ω ∈ H is an imaginary quadratic number and A, B, C be as above. If

A ≡ 0(mod N) and (∆(ω), 4N) = 1

then [ω] ∈ X0(N) = Γ0(N)\H∗ is called a Heegner Point (of discriminant ∆(ω)) on X0(N).

1. The discriminant ∆(ω) of [ω] is well-defined since Γ0(N) ⊂ GL2(Z). By abuse of
notation, we will say that ω is a Heegner point.

2. If ω′ is such that [ω′] = [ω] and if A ≡ 0(mod N), then A′ is also 0 modulo N.
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3. Also note that if (∆(ω), 4N) = 1 then

A ≡ 0(mod N) ⇐⇒ ∆(ω) ≡ β2 mod 4N for some β ∈ Z

⇐⇒ every prime p dividing N splits in K

Both forward implications are easy to see but backward ones require some work. Last
condition is often called “Heegner Hypothesis" in literature.

The following gives an alternate characterization of Heegner points.

Theorem 5.12. A quadratic number ω is a Heegner point of X0(N) ⇐⇒ ∆(ω) = ∆(Nω).

Proof. ( =⇒ ) Since ω satisfies

NA′ω2 + Bω + C = 0 with (NA′, B, C) = 1

and therefore, ∆(ω) = B2 − 4NA′C. Multiplying this by N, we get

A′(Nω)2 + B(Nω) + CN = 0

It is easy to see that (A′, B, CN) = 1. Therefore ∆(Nω) = B2 − 4NA′C = ∆(ω).

(⇐= ) Let ω satisfy an equation

Aω2 + Bω + C = 0 where A, B, C are relatively prime.

Multiplying this by N2, we get

A(Nω)2 + BN(Nω) + CN2 = 0.

Let d be the gcd of A, BN and CN2. Then ∆(Nω) = N2

d2 (B2 − 4AC). Since ∆(ω) = ∆(Nω),
this implies d = ±N and therefore, A ≡ 0(mod N).

We remarked at the end of section 5.1 that any point τ ∈ Y0(N) = Γ0(N)\H can be inter-
preted as a pair of elliptic curves,

E =
C

〈1, τ〉 , E′ =
C

〈1, Nτ〉 , together with the N-isogeny E→ E′.

Then a Heegner point ω corresponds to a pair of N-isogenous ECs, each CM by the same
order because ∆(ω) = ∆(Nω). Infact, this property characterizes Heegner points and Birch
defined them this way when he first introduced them in [Bir75].

Also recall that the image of ω on X0(N) may be represented on the plane model as

(j(ω), jN(ω)) ∈ Z0(N) (5.2)

Given an elliptic curve E/Q of conductor N with a rational map

ΦN,E : X0(N)(C)→ E(C) (5.3)
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defined over Q (5.7). If ω is a Heegner point then by equation 5.2 and 5.3, we get

ΦN,E(ω) ∈ E (Q (j(ω), jN(ω))) .

Now by theorem 4.5, the Hilbert class field H = Q(ω, j(ω)) = Q (ω, jN(ω)) since ∆(ω) =
∆(Nω). Therefore, Q (j(ω), jN(ω)) ⊂ Q(ω, j(ω)) = H and we have

ΦN,E(ω) ∈ E(H).

Since H is Galois over K = Q(ω), we can find a point in E(K) using this point: Let ∆(ω) = D
and the class number h = h(D). In order to obtain a complete set of H/K conjugates, we
find h Heegner points ω1, . . . , ωh, each satisfying

Aiω
2
i + Biωi + Ci = 0 with ∆(ωi) = B2

i − 4AiCi = D ≡ r2 mod 4N,
Ai ≡ 0(mod N) , and Bi ≡ r mod 2N.

Then we take the following sum to obtain a point in E(K).

PK = TrH
K (ΦN,E (ω1)) = ΦN,E (ω1) + · · ·+ ΦN,E (ωh)

In the next semester, we will see how this point can be used to construct a point in E(Q).

§§5.5. The Theorems of Gross-Zagier and Kolyvagin

In 1982, Birch and Stephens [BS81] published a conjecture about the height of the rational
point arising from the Heegner construction:

[Conjecture 5.1] If E is an elliptic curve over Q which is parametrized by modular functions,
i.e. E is a Weil curve, and K is a complex quadratic field such that the Mordell-Weil group
E(K) of K-rational points of E has odd rank, then the "canonical" K-rational point of E which
is given by Heegner’s construction has Tate height measured by L′E/K(1).

Soon after, in 1983, Gross and Zagier proved this conjecture [Gro83].

Theorem 5.13. (Gross-Zagier, 1983) Let E/Q be a modular elliptic curve given by

E : y2 = 4x3 + ax + b and ED : Dy2 = 4x3 + ax + b be a twist,

where D < 0 is the discriminant of an imaginary quadratic field. Assume also that (D, N) =
1, where N is the conductor of E and that

D ≡ β2 (mod 4N) for some β.

Let ε be the sign of the functional equation of L(E/Q, s) and let ΩE and ΩED denote the least
positive real periods of the elliptic curves E and ED, respectively, there are two cases:

• Case 1: ε = −1. Then there exists a point PD ∈ E(Q) such that

L(ED/Q, 1)L′(E/Q, 1) = cΩED ΩEĥE (PD)

where c is a nonzero rational number and ĥE is the height function on E(Q).
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• Case 2: ε = 1. Then there exists a point PD ∈ ED(Q) such that

L(E/Q, 1)L′(ED/Q, 1) = cΩED ΩEĥED (PD)

where c is as above and ĥED is the height function on ED(Q).

In both cases, the point PD will be explicitely constructed from the point PK discussed above.
Victor Kolyvagin [Kol89] made a further breakthrough by proving:

Theorem 5.14. (Kolyvagin, 1988) If PK is a point of infinite order, then the following are true:

1. rank E(K) = 1.

2. The index of PK in E(K), [E(K) : 〈PK〉], annihalates X(E/K). Hence X(E/K) is finite.

Morover, refining Kolyvagin’s method and combining it with Gross-Zagier, we get

Theorem 5.15. (Gross-Zagier, Kolyvagin) Let E/Q be a modular elliptic curve. And sup-
pose that ords=1 L(E/Q, s) = r with r ∈ {0, 1}. Then

• rank(E(Q)) = r.

• X(E/Q) is finite with an upper bound on its size consistent with the BSD formula .

The above result can be extended to all elliptic curves over Q using the Modularity theorem.

In the next semester, we will see the proof of the above theorems (5.13 and 5.14).
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