Homological Dimension

Ajay Prajapati
Indian Institute of Technology, Kanpur

April 21, 2022

Overview

(1) Introduction
(2) Homological Dimension Theory

Overview

(1) Introduction
(2) Homological Dimension Theory

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a right exact functor between two abelian categories. Assume that \mathcal{A} has enough projectives.

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a right exact functor between two abelian categories. Assume that \mathcal{A} has enough projectives. Then we define left derived functors $L_{n} F$ of F as

$$
L_{n} F(A):=\mathrm{H}_{n}\left(F\left(P_{\bullet}\right)\right) \quad(\text { for all } n \geq 0)
$$

for any projective resolution $P \bullet A \longrightarrow 0$.

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a right exact functor between two abelian categories. Assume that \mathcal{A} has enough projectives. Then we define left derived functors $L_{n} F$ of F as

$$
L_{n} F(A):=\mathrm{H}_{n}\left(F\left(P_{\bullet}\right)\right) \quad(\text { for all } n \geq 0)
$$

for any projective resolution $P_{\bullet} \longrightarrow A \longrightarrow 0$.
Now we choose $F=-\otimes_{R}{ }_{R} N_{S}:$ Mod- $\mathbf{R} \longrightarrow$ Mod-S in above definition and define

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a right exact functor between two abelian categories. Assume that \mathcal{A} has enough projectives. Then we define left derived functors $L_{n} F$ of F as

$$
L_{n} F(A):=\mathrm{H}_{n}\left(F\left(P_{\bullet}\right)\right) \quad(\text { for all } n \geq 0)
$$

for any projective resolution $P_{\bullet} \longrightarrow A \longrightarrow 0$.
Now we choose $F=-\otimes_{R}{ }_{R} N_{S}:$ Mod- $\mathbf{R} \longrightarrow$ Mod-S in above definition and define

$$
\operatorname{Tor}_{n}^{R}(M, N):=L_{n} F\left(M_{R}\right)=\mathrm{H}_{n}\left(P_{\bullet} \otimes_{R}{ }_{R} N_{S}\right)
$$

for any projective resolution $P_{\bullet} \longrightarrow M \longrightarrow 0$ of M in Mod-R.

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a left exact functor between two abelian categories. Assume that \mathcal{A} has enough injectives.

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a left exact functor between two abelian categories. Assume that \mathcal{A} has enough injectives. Then we define right derived functors $R^{n} F$ of F as

$$
R^{n} F(A):=\mathrm{H}^{n}\left(F\left(I^{\bullet}\right)\right) \quad \text { for all } n \geq 0
$$

and for any injective resolution $0 \longrightarrow A \longrightarrow I^{\bullet}$.

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a left exact functor between two abelian categories. Assume that \mathcal{A} has enough injectives. Then we define right derived functors $R^{n} F$ of F as

$$
R^{n} F(A):=\mathrm{H}^{n}\left(F\left(I^{\bullet}\right)\right) \quad \text { for all } n \geq 0
$$

and for any injective resolution $0 \longrightarrow A \longrightarrow I^{\bullet}$.
Now we choose $F=\operatorname{Hom}_{R}\left(M_{R},-\right): \mathbf{M o d}-\mathbf{R} \longrightarrow \mathbf{A b}$ in above definition and define

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a left exact functor between two abelian categories. Assume that \mathcal{A} has enough injectives. Then we define right derived functors $R^{n} F$ of F as

$$
R^{n} F(A):=\mathrm{H}^{n}\left(F\left(I^{\bullet}\right)\right) \quad \text { for all } n \geq 0
$$

and for any injective resolution $0 \longrightarrow A \longrightarrow I^{\bullet}$.
Now we choose $F=\operatorname{Hom}_{R}\left(M_{R},-\right): \mathbf{M o d}-\mathbf{R} \longrightarrow \mathbf{A b}$ in above definition and define

$$
\operatorname{Ext}_{R}^{n}(M, N):=R^{n} \operatorname{Hom}_{R}\left(M_{R},-\right)(A)=\mathrm{H}^{n}\left(\operatorname{Hom}_{R}\left(M_{R}, I^{\bullet}\right)\right)
$$

for any injective resolution $0 \longrightarrow N \longrightarrow I^{\bullet}$ of N in Mod-R.

Definition

Let $F: \mathcal{A} \longrightarrow \mathcal{B}$ be a left exact functor between two abelian categories. Assume that \mathcal{A} has enough injectives. Then we define right derived functors $R^{n} F$ of F as

$$
R^{n} F(A):=\mathrm{H}^{n}\left(F\left(I^{\bullet}\right)\right) \quad \text { for all } n \geq 0
$$

and for any injective resolution $0 \longrightarrow A \longrightarrow I^{\bullet}$.
Now we choose $F=\operatorname{Hom}_{R}\left(M_{R},-\right): \mathbf{M o d}-\mathbf{R} \longrightarrow \mathbf{A b}$ in above definition and define

$$
\operatorname{Ext}_{R}^{n}(M, N):=R^{n} \operatorname{Hom}_{R}\left(M_{R},-\right)(A)=\mathrm{H}^{n}\left(\operatorname{Hom}_{R}\left(M_{R}, I^{\bullet}\right)\right)
$$

for any injective resolution $0 \longrightarrow N \longrightarrow I^{\bullet}$ of N in Mod-R.
Remark: We can also use projective resolution of M_{R} to compute $\operatorname{Ext}_{R}^{n}(M, N)$ (recall $\operatorname{Hom}_{R}\left(-, N_{R}\right)$ is contravariant). This follows from results in Weibel, section 2.7 (specifically theorem 2.7.6).

Tor and Ext computations

Calculation

Recall from last class that for any abelian group B

$$
\operatorname{Tor}_{n}^{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, B)= \begin{cases}B / m B & \text { if } n=0 \\ B[m]=\{b \in B: m b=0\} & \text { if } n=1 \\ 0 & \text { for } n \geq 2\end{cases}
$$

Tor and Ext computations

Calculation

Recall from last class that for any abelian group B

$$
\operatorname{Tor}_{n}^{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, B)= \begin{cases}B / m B & \text { if } n=0 \\ B[m]=\{b \in B: m b=0\} & \text { if } n=1 \\ 0 & \text { for } n \geq 2\end{cases}
$$

To see this, use the projective resolution

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \longrightarrow \mathbb{Z} / m \mathbb{Z} \longrightarrow 0
$$

of $\mathbb{Z} / m \mathbb{Z}$ and now $\operatorname{Tor}_{*}(\mathbb{Z} / m \mathbb{Z}, B)$ is the homology of the complex $0 \longrightarrow B \xrightarrow{m} B \longrightarrow 0$.

Tor and Ext computations

Proposition
For all abelian groups A and B :
(1) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group.

Tor and Ext computations

Proposition
For all abelian groups A and B :
(1) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group.
(2) $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ for $n \geq 2$.

Tor and Ext computations

Proposition

For all abelian groups A and B :
(1) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group.
(2) $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ for $n \geq 2$.

Proof

- WLOG, we can assume that A is finitely generated \mathbb{Z}-module.

Tor and Ext computations

Proposition

For all abelian groups A and B :
(1) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group.
(2) $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ for $n \geq 2$.

Proof

- WLOG, we can assume that A is finitely generated \mathbb{Z}-module. (left adjoint functors preserve colimits and

Tor and Ext computations

Proposition

For all abelian groups A and B :
(1) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group.
(2) $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ for $n \geq 2$.

Proof

- WLOG, we can assume that A is finitely generated \mathbb{Z}-module. (left adjoint functors preserve colimits and any module is direct limits of its finitely generated submodules)

Tor and Ext computations

Proposition

For all abelian groups A and B :
(1) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group.
(2) $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ for $n \geq 2$.

Proof

- WLOG, we can assume that A is finitely generated \mathbb{Z}-module. (left adjoint functors preserve colimits and any module is direct limits of its finitely generated submodules)
- By structure theorem of finitely generated abelian groups we can write

$$
A \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / m_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / m_{s} \mathbb{Z}
$$

for some integers r, m_{1}, \cdots, m_{s}.

Tor and Ext computations

Proposition

For all abelian groups A and B :
(1) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group.
(2) $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ for $n \geq 2$.

Proof

- WLOG, we can assume that A is finitely generated \mathbb{Z}-module. (left adjoint functors preserve colimits and any module is direct limits of its finitely generated submodules)
- By structure theorem of finitely generated abelian groups we can write

$$
A \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / m_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / m_{s} \mathbb{Z}
$$

for some integers r, m_{1}, \cdots, m_{s}.

- $\operatorname{Tor}_{n}^{\mathbb{Z}}\left(\mathbb{Z}^{r},-\right)$ vanishes for all $n \neq 0$.

Tor and Ext computations

Proposition

For all abelian groups A and B :
(1) $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, B)$ is a torsion abelian group.
(2) $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B)=0$ for $n \geq 2$.

Proof

- WLOG, we can assume that A is finitely generated \mathbb{Z}-module. (left adjoint functors preserve colimits and any module is direct limits of its finitely generated submodules)
- By structure theorem of finitely generated abelian groups we can write

$$
A \cong \mathbb{Z}^{r} \oplus \mathbb{Z} / m_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / m_{s} \mathbb{Z}
$$

for some integers r, m_{1}, \cdots, m_{s}.

- $\operatorname{Tor}_{n}^{\mathbb{Z}}\left(\mathbb{Z}^{r},-\right)$ vanishes for all $n \neq 0$.
- So $\operatorname{Tor}_{n}^{\mathbb{Z}}(A, B) \cong \operatorname{Tor}_{n}^{\mathbb{Z}}\left(\mathbb{Z} / m_{1} \mathbb{Z}, B\right) \oplus \cdots \oplus \operatorname{Tor}_{n}^{\mathbb{Z}}\left(\mathbb{Z} / m_{s} \mathbb{Z}, B\right)$.

Tor and Ext computations

Calculation

Take $R=\mathbb{Z} / m \mathbb{Z}$ and $A=\mathbb{Z} / d \mathbb{Z}$ with $d \mid m$,

Tor and Ext computations

Calculation

Take $R=\mathbb{Z} / m \mathbb{Z}$ and $A=\mathbb{Z} / d \mathbb{Z}$ with $d \mid m$, then we can use the periodic free resolution

$$
\cdots \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{\epsilon} \mathbb{Z} / d \mathbb{Z} \longrightarrow 0
$$

Tor and Ext computations

Calculation

Take $R=\mathbb{Z} / m \mathbb{Z}$ and $A=\mathbb{Z} / d \mathbb{Z}$ with $d \mid m$, then we can use the periodic free resolution

$$
\cdots \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{\epsilon} \mathbb{Z} / d \mathbb{Z} \longrightarrow 0
$$

to see that for all $\mathbb{Z} / m \mathbb{Z}$-modules B we have

$$
\operatorname{Tor}_{n}^{\mathbb{Z} / m \mathbb{Z}}(\mathbb{Z} / d \mathbb{Z}, B)= \begin{cases}B / d B & \text { if } n=0 \\ \{b \in B: d b=0\} /(m / d) B & \text { if } n \text { is odd, } n>0 \\ \{b \in B:(m / d) b=0\} / d B & \text { if } n \text { is even, } n>0\end{cases}
$$

Tor and Ext computations

Calculation

Take $R=\mathbb{Z} / m \mathbb{Z}$ and $A=\mathbb{Z} / d \mathbb{Z}$ with $d \mid m$, then we can use the periodic free resolution

$$
\cdots \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{\epsilon} \mathbb{Z} / d \mathbb{Z} \longrightarrow 0
$$

to see that for all $\mathbb{Z} / m \mathbb{Z}$-modules B we have

$$
\operatorname{Tor}_{n}^{\mathbb{Z} / m \mathbb{Z}}(\mathbb{Z} / d \mathbb{Z}, B)= \begin{cases}B / d B & \text { if } n=0 \\ \{b \in B: d b=0\} /(m / d) B & \text { if } n \text { is odd, } n>0 \\ \{b \in B:(m / d) b=0\} / d B & \text { if } n \text { is even, } n>0\end{cases}
$$

In particular, if $d^{2} \mid m$ and take $B=\mathbb{Z} / d \mathbb{Z}$ then we get that

$$
\operatorname{Tor}_{n}^{\mathbb{Z} / m \mathbb{Z}}(\mathbb{Z} / d \mathbb{Z}, \mathbb{Z} / d \mathbb{Z})=\mathbb{Z} / d \mathbb{Z} \quad \text { for all } n
$$

Calculations

- $\operatorname{Ext}_{\mathbb{Z}}^{n}(A, B)=0$ for $n \geq 2$ and all abelian groups A, B.

Calculations

- $\operatorname{Ext}_{\mathbb{Z}}^{n}(A, B)=0$ for $n \geq 2$ and all abelian groups A, B.
- (Proof) Embed B in an injective abelian group I^{0}; the quotient I^{1} is divisible, hence injective.

Calculations

- $\operatorname{Ext}_{\mathbb{Z}}^{n}(A, B)=0$ for $n \geq 2$ and all abelian groups A, B.
- (Proof) Embed B in an injective abelian group I^{0}; the quotient I^{1} is divisible, hence injective. Therefore, $\operatorname{Ext}^{*}(A, B)$ is the cohomology of

$$
0 \longrightarrow \operatorname{Hom}\left(A, I^{0}\right) \longrightarrow \operatorname{Hom}\left(A, I^{1}\right) \longrightarrow 0
$$

Calculations

- $\operatorname{Ext}_{\mathbb{Z}}^{n}(A, B)=0$ for $n \geq 2$ and all abelian groups A, B.
- (Proof) Embed B in an injective abelian group I^{0}; the quotient I^{1} is divisible, hence injective. Therefore, Ext ${ }^{*}(A, B)$ is the cohomology of

$$
0 \longrightarrow \operatorname{Hom}\left(A, I^{0}\right) \longrightarrow \operatorname{Hom}\left(A, I^{1}\right) \longrightarrow 0
$$

- Let $A=\mathbb{Z} / m \mathbb{Z}$ then

$$
\operatorname{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z} / m \mathbb{Z}, B)= \begin{cases}\operatorname{Hom}(\mathbb{Z} / m \mathbb{Z}, B)=B[m] & \text { if } n=0 \\ B / m B & \text { if } n=1 \\ 0 & \text { if } n \geq 2\end{cases}
$$

Calculations

- $\operatorname{Ext}_{\mathbb{Z}}^{n}(A, B)=0$ for $n \geq 2$ and all abelian groups A, B.
- (Proof) Embed B in an injective abelian group I^{0}; the quotient I^{1} is divisible, hence injective. Therefore, Ext ${ }^{*}(A, B)$ is the cohomology of

$$
0 \longrightarrow \operatorname{Hom}\left(A, I^{0}\right) \longrightarrow \operatorname{Hom}\left(A, I^{1}\right) \longrightarrow 0
$$

- Let $A=\mathbb{Z} / m \mathbb{Z}$ then

$$
\operatorname{Ext}_{\mathbb{Z}}^{n}(\mathbb{Z} / m \mathbb{Z}, B)= \begin{cases}\operatorname{Hom}(\mathbb{Z} / m \mathbb{Z}, B)=B[m] & \text { if } n=0 \\ B / m B & \text { if } n=1 \\ 0 & \text { if } n \geq 2\end{cases}
$$

To see this, use the projective resolution

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \longrightarrow \mathbb{Z} / m \mathbb{Z} \longrightarrow 0
$$

of $\mathbb{Z} / m \mathbb{Z}$ and now Ext ${ }^{*}$ is the homology of $0 \longrightarrow B \xrightarrow{m} B \longrightarrow 0$.

Calculations

- When $R=\mathbb{Z} / m \mathbb{Z}$ and $B=\mathbb{Z} / d \mathbb{Z}$ with $d \mid m$, we have

$$
0 \longrightarrow \mathbb{Z} / d \mathbb{Z} \xrightarrow{i} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \cdots,
$$

an infinite periodic injective resolution of B.

Calculations

- When $R=\mathbb{Z} / m \mathbb{Z}$ and $B=\mathbb{Z} / d \mathbb{Z}$ with $d \mid m$, we have

$$
0 \longrightarrow \mathbb{Z} / d \mathbb{Z} \xrightarrow{i} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \cdots,
$$

an infinite periodic injective resolution of B.

- Let $A^{*}=\operatorname{Hom}_{R}(A, \mathbb{Z} / m \mathbb{Z})$ denote the Pontryagin dual of of an R-module A. Then

Calculations

- When $R=\mathbb{Z} / m \mathbb{Z}$ and $B=\mathbb{Z} / d \mathbb{Z}$ with $d \mid m$, we have

$$
0 \longrightarrow \mathbb{Z} / d \mathbb{Z} \xrightarrow{i} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \cdots,
$$

an infinite periodic injective resolution of B.

- Let $A^{*}=\operatorname{Hom}_{R}(A, \mathbb{Z} / m \mathbb{Z})$ denote the Pontryagin dual of of an R-module A. Then
$\operatorname{Ext}_{\mathbb{Z} / m \mathbb{Z}}^{n}(A, \mathbb{Z} / d \mathbb{Z})= \begin{cases}\operatorname{Hom}(A, \mathbb{Z} / d \mathbb{Z}) & \text { if } n=0 \\ \left\{f \in A^{*}:(m / d) f=0\right\} / d A^{*} & \text { if } n \text { is odd, } n>0 \\ \left\{f \in A^{*}: d f=0\right\} /(m / d) A^{*} & \text { if } n \text { is even, } n>0\end{cases}$

Calculations

- When $R=\mathbb{Z} / m \mathbb{Z}$ and $B=\mathbb{Z} / d \mathbb{Z}$ with $d \mid m$, we have

$$
0 \longrightarrow \mathbb{Z} / d \mathbb{Z} \xrightarrow{i} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{d} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / d} \cdots,
$$

an infinite periodic injective resolution of B.

- Let $A^{*}=\operatorname{Hom}_{R}(A, \mathbb{Z} / m \mathbb{Z})$ denote the Pontryagin dual of of an R-module A. Then

$$
\operatorname{Ext}_{\mathbb{Z} / m \mathbb{Z}}^{n}(A, \mathbb{Z} / d \mathbb{Z})= \begin{cases}\operatorname{Hom}(A, \mathbb{Z} / d \mathbb{Z}) & \text { if } n=0 \\ \left\{f \in A^{*}:(m / d) f=0\right\} / d A^{*} & \text { if } n \text { is odd, } n>0 \\ \left\{f \in A^{*}: d f=0\right\} /(m / d) A^{*} & \text { if } n \text { is even, } n>0\end{cases}
$$

- In particular, if $d^{2} \mid m$, then

$$
\operatorname{Ext}_{\mathbb{Z} / n \mathbb{Z}}^{n}(\mathbb{Z} / d \mathbb{Z}, \mathbb{Z} / d \mathbb{Z}) \cong \mathbb{Z} / d \mathbb{Z} \quad \text { for all } n .
$$

Overview

(1) Introduction
(2) Homological Dimension Theory

Definition

Let A be a right R-module.

Definition

Let A be a right R-module.

- The projective dimension $p d(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by projective modules

$$
0 \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

Definition

Let A be a right R-module.

- The projective dimension $\operatorname{pd}(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by projective modules

$$
0 \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

- The injective dimension $i d(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by injective modules

$$
0 \longrightarrow A \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{n} \longrightarrow 0
$$

Definition

Let A be a right R-module.

- The projective dimension $\operatorname{pd}(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by projective modules

$$
0 \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

- The injective dimension $i d(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by injective modules

$$
0 \longrightarrow A \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{n} \longrightarrow 0
$$

- The flat dimension $f d(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by flat modules

$$
0 \longrightarrow F_{n} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow A \longrightarrow 0
$$

Definition

Let A be a right R-module.

- The projective dimension $p d(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by projective modules

$$
0 \longrightarrow P_{n} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

- The injective dimension $i d(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by injective modules

$$
0 \longrightarrow A \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{n} \longrightarrow 0
$$

- The flat dimension $f d(A)$ is the minimum integer n (if it exists) such that there is a resolution of A by flat modules

$$
0 \longrightarrow F_{n} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow A \longrightarrow 0
$$

If no finite resolution exists, we set $p d(A), i d(A)$, or $f d(A)$ equal to ∞.

Global Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{i d(B): B \in \mathbf{M o d}-\mathbf{R}\}$

Global Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{i d(B): B \in \mathbf{M o d} \mathbf{- R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{-}\}$

Global Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{i d(B): B \in \mathbf{M o d} \mathbf{- R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{R}\}$
(3) $\sup \{p d(R / I): I$ is a right ideal of $R\}$

Global Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{i d(B): B \in \mathbf{M o d} \mathbf{- R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{R}\}$
(3) $\sup \{p d(R / I): I$ is a right ideal of $R\}$
(0) $\sup \left\{d: \operatorname{Ext}_{R}^{d}(A, B) \neq 0\right.$ for some right modules $\left.A, B\right\}$.

Global Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{i d(B): B \in \mathbf{M o d} \mathbf{- R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{R}\}$
($\sup \{p d(R / I): I$ is a right ideal of $R\}$
(9) $\sup \left\{d: \operatorname{Ext}_{R}^{d}(A, B) \neq 0\right.$ for some right modules $\left.A, B\right\}$.

This common number (possibly ∞) is called the (right) global dimension of R, r.gl. $\operatorname{dim}(R)$.

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$
($\sup \{f d(B): B$ is a left R-module $\}$

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$
($\sup \{f d(B): B$ is a left R-module $\}$
(1) $\sup \{f d(R / I): I$ is a left ideal of $R\}$

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$
($\sup \{f d(B): B$ is a left R-module $\}$
(1) $\sup \{f d(R / I): I$ is a left ideal of $R\}$
(0) $\sup \left\{d: \operatorname{Tor}_{d}^{R}(A, B) \neq 0\right.$. for some R-modules $\left.A, B\right\}$

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$
($\sup \{f d(B): B$ is a left R-module $\}$
(1) $\sup \{f d(R / I): I$ is a left ideal of $R\}$
(0) $\sup \left\{d: \operatorname{Tor}_{d}^{R}(A, B) \neq 0\right.$. for some R-modules $\left.A, B\right\}$

This common number (possibly ∞) is called the Tor-dimension of R.

Examples

- Every field has global and Tor dimension 0.

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$
($\sup \{f d(B): B$ is a left R-module $\}$
(1) $\sup \{f d(R / I): I$ is a left ideal of $R\}$
(0) $\sup \left\{d: \operatorname{Tor}_{d}^{R}(A, B) \neq 0\right.$. for some R-modules $\left.A, B\right\}$

This common number (possibly ∞) is called the Tor-dimension of R.

Examples

- Every field has global and Tor dimension 0 .
- $R=\mathbb{Z}$ has both global and Tor dimension 1 .

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$
($\sup \{f d(B): B$ is a left R-module $\}$
(1) $\sup \{f d(R / I): I$ is a left ideal of $R\}$
($\sup \left\{d: \operatorname{Tor}_{d}^{R}(A, B) \neq 0\right.$. for some R-modules $\left.A, B\right\}$
This common number (possibly ∞) is called the Tor-dimension of R.

Examples

- Every field has global and Tor dimension 0 .
- $R=\mathbb{Z}$ has both global and Tor dimension 1 .
- If $R=\mathbb{Z} / m \mathbb{Z}$ with some $p^{2} \mid m$ then R has both global and Tor dimension ∞.

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$
($\sup \{f d(B): B$ is a left R-module $\}$
(1) $\sup \{f d(R / I): I$ is a left ideal of $R\}$
(0) $\sup \left\{d: \operatorname{Tor}_{d}^{R}(A, B) \neq 0\right.$. for some R-modules $\left.A, B\right\}$

This common number (possibly ∞) is called the Tor-dimension of R.

Examples

- Every field has global and Tor dimension 0 .
- $R=\mathbb{Z}$ has both global and Tor dimension 1 .
- If $R=\mathbb{Z} / m \mathbb{Z}$ with some $p^{2} \mid m$ then R has both global and Tor dimension ∞.
- Since every projective module is flat, $f d(M) \leq p d(M)$ for every $M \in \operatorname{Mod}-\mathbf{R}$.

Tor-Dimension Theorem

The following numbers are the same for any ring R :
(1) $\sup \{f d(A): A$ is a right R-module $\}$
(2) $\sup \{f d(R / J): J$ is a right ideal of $R\}$
($\sup \{f d(B): B$ is a left R-module $\}$
(1) $\sup \{f d(R / I): I$ is a left ideal of $R\}$
(0) $\sup \left\{d: \operatorname{Tor}_{d}^{R}(A, B) \neq 0\right.$. for some R-modules $\left.A, B\right\}$

This common number (possibly ∞) is called the Tor-dimension of R.

Examples

- Every field has global and Tor dimension 0 .
- $R=\mathbb{Z}$ has both global and Tor dimension 1 .
- If $R=\mathbb{Z} / m \mathbb{Z}$ with some $p^{2} \mid m$ then R has both global and Tor dimension ∞.
- Since every projective module is flat, $f d(M) \leq p d(M)$ for every $M \in \mathbf{M o d}-\mathbf{R}$.
- For $R=\mathbb{Z}, f d(\mathbb{Q})=0$ whereas $\operatorname{pd}(\mathbb{Q})=1$.

Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A :
(1) $\operatorname{pd}(A) \leq d$.

Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A :
(1) $p d(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules B.

Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A :
(1) $\operatorname{pd}(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules B.
(0) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules B.

Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A :
(1) $\operatorname{pd}(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules B.
(3) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules B.
(1) If

$$
0 \longrightarrow M_{d} \longrightarrow P_{d-1} \longrightarrow P_{d-2} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

is any resolution with P 's projective,

Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A :
(1) $\operatorname{pd}(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules B.
(0) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules B.
(1) If

$$
0 \longrightarrow M_{d} \longrightarrow P_{d-1} \longrightarrow P_{d-2} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

is any resolution with P 's projective, then the syzygy M_{d} is also projective.

Proof

(1) Clearly $(4) \Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.

Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A :
(1) $\operatorname{pd}(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules B.
(0) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules B.
(1) If

$$
0 \longrightarrow M_{d} \longrightarrow P_{d-1} \longrightarrow P_{d-2} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

is any resolution with P 's projective, then the syzygy M_{d} is also projective.

Proof

(1) Clearly $(4) \Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.
(2) By dimension shifting $\operatorname{Ext}^{d+1}(A, B) \cong \operatorname{Ext}^{1}\left(M_{d}, B\right)$.

Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A :
(1) $p d(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules B.
(0) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules B.
(1) If

$$
0 \longrightarrow M_{d} \longrightarrow P_{d-1} \longrightarrow P_{d-2} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

is any resolution with P 's projective, then the syzygy M_{d} is also projective.

Proof

(1) Clearly $(4) \Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.
(2) By dimension shifting $\operatorname{Ext}^{d+1}(A, B) \cong \operatorname{Ext}^{1}\left(M_{d}, B\right)$.

- M_{d} is projective iff $\operatorname{Ext}_{R}^{1}\left(M_{d}, B\right)=0$ for all B.

Preparation of proof of Global Dimension Theorem

Injective Dimension Lemma

The following are equivalent for a right R-module B :
(1) $i d(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules A.
(0) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules A.
(1) If $0 \longrightarrow B \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{d-1} \longrightarrow M^{d} \longrightarrow 0$ is any resolution with the E^{i} injective, then the syzygy M^{d} is also injective.

Preparation of proof of Global Dimension Theorem

Injective Dimension Lemma

The following are equivalent for a right R-module B :
(1) $i d(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules A.
(0) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules A.
(1) If $0 \longrightarrow B \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{d-1} \longrightarrow M^{d} \longrightarrow 0$ is any resolution with the E^{i} injective, then the syzygy M^{d} is also injective.

Lemma

$B \in \operatorname{Mod}-\mathbf{R}$ is injective $\Longleftrightarrow \operatorname{Ext}_{R}^{1}(R / I, B)=0$ for all right ideals I.

Preparation of proof of Global Dimension Theorem

Injective Dimension Lemma

The following are equivalent for a right R-module B :
(1) $i d(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules A.
(3) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules A.
(1) If $0 \longrightarrow B \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{d-1} \longrightarrow M^{d} \longrightarrow 0$ is any resolution with the E^{i} injective, then the syzygy M^{d} is also injective.

Lemma

$B \in \operatorname{Mod}-\mathbf{R}$ is injective $\Longleftrightarrow \operatorname{Ext}_{R}^{1}(R / I, B)=0$ for all right ideals I.

Proof

(1) Apply $\operatorname{Hom}(-, B)$ to $0 \longrightarrow I \longrightarrow R \longrightarrow R / I \longrightarrow 0$, we see that
$0 \longrightarrow \operatorname{Hom}(R / I, B) \longrightarrow \operatorname{Hom}(R, B) \longrightarrow \operatorname{Hom}(I, B) \longrightarrow \operatorname{Ext}^{1}(R / I, B) \longrightarrow 0$
is exact.

Preparation of proof of Global Dimension Theorem

Injective Dimension Lemma

The following are equivalent for a right R-module B :
(1) $i d(A) \leq d$.
(2) $\operatorname{Ext}_{R}^{n}(A, B)=0$ for all $n>d$ and all R-modules A.
(3) $\operatorname{Ext}_{R}^{d+1}(A, B)=0$ for all R-modules A.
(1) If $0 \longrightarrow B \longrightarrow E^{0} \longrightarrow E^{1} \longrightarrow \cdots \longrightarrow E^{d-1} \longrightarrow M^{d} \longrightarrow 0$ is any resolution with the E^{i} injective, then the syzygy M^{d} is also injective.

Lemma

$B \in \mathbf{M o d}-\mathbf{R}$ is injective $\Longleftrightarrow \operatorname{Ext}_{R}^{1}(R / I, B)=0$ for all right ideals I.

Proof

(1) Apply $\operatorname{Hom}(-, B)$ to $0 \longrightarrow I \longrightarrow R \longrightarrow R / I \longrightarrow 0$, we see that
$0 \longrightarrow \operatorname{Hom}(R / I, B) \longrightarrow \operatorname{Hom}(R, B) \longrightarrow \operatorname{Hom}(I, B) \longrightarrow \operatorname{Ext}^{1}(R / I, B) \longrightarrow 0$ is exact. Use Baer's criterion.

Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:
(1) $\sup \{i d(B): B \in \mathbf{M o d} \mathbf{R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{R}\}$
(3) $\sup \{p d(R / I): I$ is a right ideal of $R\}$
(9) $\sup \left\{d: \operatorname{Ext}_{R}^{d}(A, B) \neq 0\right.$ for some right modules $\left.A, B\right\}$.

Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:
(1) $\sup \{i d(B): B \in \mathbf{M o d}-\mathbf{R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{-}\}$
(3) $\sup \{p d(R / I): I$ is a right ideal of $R\}$
(1) $\sup \left\{d: \operatorname{Ext}_{R}^{d}(A, B) \neq 0\right.$ for some right modules $\left.A, B\right\}$.

Proof

(1) By projective and injective dimension lemmas, $\sup (2)=\sup (4)=\sup (1)$.

Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:
(1) $\sup \{i d(B): B \in \mathbf{M o d}-\mathbf{R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{-}\}$
(3) $\sup \{p d(R / I): I$ is a right ideal of $R\}$
(1) $\sup \left\{d: \operatorname{Ext}_{R}^{d}(A, B) \neq 0\right.$ for some right modules $\left.A, B\right\}$.

Proof

(1) By projective and injective dimension lemmas, $\sup (2)=\sup (4)=\sup (1)$.
(2) Since $\sup (1)=\sup (2) \geq \sup (3)$, want to prove $\sup (3) \geq \sup (1)$.

Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:
(1) $\sup \{i d(B): B \in \mathbf{M o d} \mathbf{R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{R}\}$
(3) $\sup \{p d(R / I): I$ is a right ideal of $R\}$
($\sup \left\{d: \operatorname{Ext}_{R}^{d}(A, B) \neq 0\right.$ for some right modules $\left.A, B\right\}$.

Proof

(1) By projective and injective dimension lemmas, $\sup (2)=\sup (4)=\sup (1)$.
(2) Since $\sup (1)=\sup (2) \geq \sup (3)$, want to $\operatorname{prove} \sup (3) \geq \sup (1)$. Suppose not and let $d=\sup (p d(R / I))$ and assume $i d(B)>d$ for some $B \in \operatorname{Mod}-\mathbf{R}$.
(3) For this B, choose a resolution
$0 \rightarrow B \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{d-1} \rightarrow M \rightarrow 0$ with the E 's injective.

Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:
(1) $\sup \{i d(B): B \in \mathbf{M o d}-\mathbf{R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{- R}\}$
(3) $\sup \{p d(R / I): I$ is a right ideal of $R\}$
(9) $\sup \left\{d: \operatorname{Ext}_{R}^{d}(A, B) \neq 0\right.$ for some right modules $\left.A, B\right\}$.

Proof

(1) By projective and injective dimension lemmas, $\sup (2)=\sup (4)=\sup (1)$.
(2) Since $\sup (1)=\sup (2) \geq \sup (3)$, want to $\operatorname{prove} \sup (3) \geq \sup (1)$. Suppose not and let $d=\sup (p d(R / I))$ and assume $i d(B)>d$ for some $B \in \operatorname{Mod}-\mathbf{R}$.
(3) For this B, choose a resolution
$0 \rightarrow B \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{d-1} \rightarrow M \rightarrow 0$ with the E 's injective.
(0) Then for all right ideals I we have

$$
0=\operatorname{Ext}_{R}^{d+1}(R / I, B) \cong \operatorname{Ext}_{R}^{1}(R / I, M)
$$

by dimension shifting.

Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:
(1) $\sup \{i d(B): B \in \mathbf{M o d}-\mathbf{R}\}$
(2) $\sup \{p d(A): A \in \mathbf{M o d} \mathbf{R}\}$
(3) $\sup \{p d(R / I): I$ is a right ideal of $R\}$
(9) $\sup \left\{d: \operatorname{Ext}_{R}^{d}(A, B) \neq 0\right.$ for some right modules $\left.A, B\right\}$.

Proof

(1) By projective and injective dimension lemmas, $\sup (2)=\sup (4)=\sup (1)$.
(2) Since $\sup (1)=\sup (2) \geq \sup (3)$, want to $\operatorname{prove} \sup (3) \geq \sup (1)$. Suppose not and let $d=\sup (p d(R / I))$ and assume $i d(B)>d$ for some $B \in \operatorname{Mod}-\mathbf{R}$.
(3) For this B, choose a resolution
$0 \rightarrow B \rightarrow E^{0} \rightarrow E^{1} \rightarrow \cdots \rightarrow E^{d-1} \rightarrow M \rightarrow 0$ with the E 's injective.

- Then for all right ideals I we have

$$
0=\operatorname{Ext}_{R}^{d+1}(R / I, B) \cong \operatorname{Ext}_{R}^{1}(R / I, M)
$$

by dimension shifting. This implies M is injective, contradiction.

The Tor-dimension theorem can be proven similarly.

The Tor-dimension theorem can be proven similarly.

Flat Dimension Lemma

The following are equivalent for a right R-module A :
(1) $f d(A) \leq d$.
(2) $\operatorname{Tor}_{n}^{R}(A, B)=0$ for all $n>d$ and all left R-modules B.
(0) $\operatorname{Tor}_{d+1}^{R}(A, B)=0$ for all left R-modules B.
(1) If

$$
0 \longrightarrow M_{d} \longrightarrow F_{d-1} \longrightarrow F_{d-2} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow A \longrightarrow 0
$$

is a resolution with all $F_{i} \in$ Flat- \mathbf{R}, then the syzygy M_{d} is also flat.

The Tor-dimension theorem can be proven similarly.

Flat Dimension Lemma

The following are equivalent for a right R-module A :
(1) $f d(A) \leq d$.
(2) $\operatorname{Tor}_{n}^{R}(A, B)=0$ for all $n>d$ and all left R-modules B.
(0) $\operatorname{Tor}_{d+1}^{R}(A, B)=0$ for all left R-modules B.
(1) If

$$
0 \longrightarrow M_{d} \longrightarrow F_{d-1} \longrightarrow F_{d-2} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow A \longrightarrow 0
$$

is a resolution with all $F_{i} \in$ Flat- \mathbf{R}, then the syzygy M_{d} is also flat.

Lemma

$B \in \mathbf{R}$-Mod is flat $\Longleftrightarrow \operatorname{Tor}_{1}^{R}(R / I, B)=0$ for all right ideals I.

Noetherian Rings

Proposition

If R is right noetherian, then

- $f d(A)=p d(A)$ for every finitely generated R-module A.

Noetherian Rings

Proposition

If R is right noetherian, then

- $f d(A)=p d(A)$ for every finitely generated R-module A.
- $\operatorname{Tor}-\operatorname{dim}(R)=r . g l . \operatorname{dim}(R)$.

Noetherian Rings

Proposition

If R is right noetherian, then

- $f d(A)=p d(A)$ for every finitely generated R-module A.
- Tor $-\operatorname{dim}(R)=r . g l . \operatorname{dim}(R)$.

Proof

- Since we can compute Tor $-\operatorname{dim}(R)$ and $r . g l . \operatorname{dim}(R)$ by the modules R / I, it suffices to prove (1).

Noetherian Rings

Proposition

If R is right noetherian, then

- $f d(A)=p d(A)$ for every finitely generated R-module A.
- $\operatorname{Tor}-\operatorname{dim}(R)=r . g l . \operatorname{dim}(R)$.

Proof

- Since we can compute Tor $-\operatorname{dim}(R)$ and $r . g l . \operatorname{dim}(R)$ by the modules R / I, it suffices to prove (1).
- Since $f d(A) \leq p d(A)$, it suffices to prove that if $f d(A)=n$ then $p d(A) \leq n$.

Noetherian Rings

Proposition

If R is right noetherian, then

- $f d(A)=p d(A)$ for every finitely generated R-module A.
- Tor $-\operatorname{dim}(R)=r . g l . \operatorname{dim}(R)$.

Proof

- Since we can compute Tor $-\operatorname{dim}(R)$ and $r . g l . \operatorname{dim}(R)$ by the modules R / I, it suffices to prove (1).
- Since $f d(A) \leq p d(A)$, it suffices to prove that if $f d(A)=n$ then $p d(A) \leq n$.
- Because R is noetherian, A is noetherian R-module and there is a resolution

$$
0 \longrightarrow M \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

where P_{i} are f.g. free R-modules and M is f.p.

Noetherian Rings

Proposition

If R is right noetherian, then

- $f d(A)=p d(A)$ for every finitely generated R-module A.
- Tor $-\operatorname{dim}(R)=r . g l . \operatorname{dim}(R)$.

Proof

- Since we can compute Tor $-\operatorname{dim}(R)$ and $r . g l . \operatorname{dim}(R)$ by the modules R / I, it suffices to prove (1).
- Since $f d(A) \leq p d(A)$, it suffices to prove that if $f d(A)=n$ then $p d(A) \leq n$.
- Because R is noetherian, A is noetherian R-module and there is a resolution

$$
0 \longrightarrow M \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

where P_{i} are f.g. free R-modules and M is f.p.

- M is flat R-module.

Noetherian Rings

Proposition

If R is right noetherian, then

- $f d(A)=p d(A)$ for every finitely generated R-module A.
- Tor $-\operatorname{dim}(R)=r . g l . \operatorname{dim}(R)$.

Proof

- Since we can compute Tor $-\operatorname{dim}(R)$ and $r . g l . \operatorname{dim}(R)$ by the modules R / I, it suffices to prove (1).
- Since $f d(A) \leq p d(A)$, it suffices to prove that if $f d(A)=n$ then $p d(A) \leq n$.
- Because R is noetherian, A is noetherian R-module and there is a resolution

$$
0 \longrightarrow M \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

where P_{i} are f.g. free R-modules and M is f.p.

- M is flat R-module.
- (Lemma) Every finitely presented flat R-module is projective.

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .
(Every R-module is projective.

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .
(3) Every R-module is projective.
(- Every R-module is injective.

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .
(Every R-module is projective.
(0) Every R-module is injective.
(0) R is noetherian, and every R-module is flat.

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .
(Every R-module is projective.
(0) Every R-module is injective.
(0) R is noetherian, and every R-module is flat.
(0) R is noetherian and has Tor-dimension 0 .

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .
(0) Every R-module is projective.
(0) Every R-module is injective.
(0) R is noetherian, and every R-module is flat.
(0) R is noetherian and has Tor-dimension 0 .

Theorem

The following are equivalent for every ring R :
(1) R is von Neumann regular.

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .
(0) Every R-module is projective.
(0) Every R-module is injective.
(0) R is noetherian, and every R-module is flat.
(0) R is noetherian and has Tor-dimension 0 .

Theorem

The following are equivalent for every ring R :
(1) R is von Neumann regular.
(2) R has Tor-dimension 0 .

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .
(0) Every R-module is projective.
(0) Every R-module is injective.
(0) R is noetherian, and every R-module is flat.
(0) R is noetherian and has Tor-dimension 0 .

Theorem

The following are equivalent for every ring R :
(1) R is von Neumann regular.
(2) R has Tor-dimension 0 .
(3) Every R-module is flat.

Theorem

The following are equivalent for every ring R, where by " R module" we mean either left R-module or right R-module.
(1) R is semi-simple.
(2) R has (left and/or right) global dimension 0 .
(Every R-module is projective.
(0) Every R-module is injective.
(0) R is noetherian, and every R-module is flat.

- R is noetherian and has Tor-dimension 0 .

Theorem

The following are equivalent for every ring R :
(1) R is von Neumann regular.
(2) R has Tor-dimension 0 .
(3) Every R-module is flat.
(-) R / I is projective for every finitely generated ideal I.

Thank You

