Homological Dimension

Ajay Prajapati

Indian Institute of Technology, Kanpur

April 21, 2022

=] F = £ DA
Ajay Prajapati MTH613A: Rings and Modules



Overview

© Introduction

© Homological Dimension Theory

MTH613A: Rings and Modules



Overview

© Introduction

=] F = = DA
Ajay Prajapati MTH613A: Rings and Modules



Definition

that A has enough projectives.

Let F': A — B be a right exact functor between two abelian categories. Assume
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Definition
Let F : A — B be a right exact functor between two abelian categories. Assume
that A has enough projectives. Then we define left derived functors L, F of F' as

L,F(A) :=H,(F(PR,)) (foralln>0)

for any projective resolution P, — A — 0.
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that A has enough projectives. Then we define left derived functors L,, F' of F' as

L,F(A) :=H,(F(PR,)) (foralln>0)

for any projective resolution P, — A — 0.

Now we choose I' = — ®r rNs : Mod-R — Mod-S in above definition and
define
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Definition
Let F : A — B be a right exact functor between two abelian categories. Assume
that A has enough projectives. Then we define left derived functors L, F of F as

L,F(A) :=H,(F(PR,)) (foralln>0)

for any projective resolution P, — A — 0.

Now we choose I' = — ®r rNs : Mod-R — Mod-S in above definition and

define
Tor(M,N) := L,F(Mg) = H,(P, ®r rNs)

for any projective resolution P, — M — 0 of M in Mod-R.
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Definition

that A has enough injectives.

Let F': A — B be a left exact functor between two abelian categories. Assume
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Definition
Let F': A — B be a left exact functor between two abelian categories. Assume
that A has enough injectives. Then we define right derived functors R™F' of F as

R"F(A) :=H"(F(I*)) foralln>0

and for any injective resolution 0 — A — I°.
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Definition
Let F': A — B be a left exact functor between two abelian categories. Assume
that A has enough injectives. Then we define right derived functors R™F' of F as

R"F(A) :=H"(F(I*)) foralln>0

and for any injective resolution 0 — A — I°.

Now we choose F' = Homp(Mp, —) : Mod-R — Ab in above definition and
define

EXt%(M, N) = R" HOHIR(MR, —)(A) = Hn(HOHlR(MR, I'))

for any injective resolution 0 — N — I* of N in Mod-R.
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Definition
Let F': A — B be a left exact functor between two abelian categories. Assume
that A has enough injectives. Then we define right derived functors R™F' of F as

R"F(A) :=H"(F(I*)) foralln>0

and for any injective resolution 0 — A — I°.

Now we choose F' = Hompg(Mpg,—) : Mod-R — Ab in above definition and
define

EXt%(M, N) = R" HOHIR(MR, —)(A) = Hn(HOHlR(MR, I'))
for any injective resolution 0 — N — I* of N in Mod-R.
Remark: We can also use projective resolution of Mp to compute Ext’, (M, N)

(recall Homp(—, Ng) is contravariant). This follows from results in Weibel,
section 2.7 (specifically theorem 2.7.6).
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Tor and Ext computations

Calculation
Recall from last class that for any abelian group B

B/mB

Tor%(Z/mZ,B) = { Blm] = {b€ B : mb=0}
0

ifn=20
ifn=1
for n > 2
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Tor and Ext computations

Calculation

Recall from last class that for any abelian group B

B/mB ifn=20
Tor’(Z/mZ,B) = { Blm]={be B:mb=0} ifn=1
0 for n > 2

To see this, use the projective resolution
0 —Z-™572—7Z/mZ—0

of Z/mZ and now Tor,(Z/mZ, B) is the homology of the complex
0— B B—0.
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Tor and Ext computations
Proposition

For all abelian groups A and B :

© Tor’(A, B) is a torsion abelian group.
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Tor and Ext computations
Proposition
For all abelian groups A and B :

© Tor’(A, B) is a torsion abelian group.
Q Tor’(A,B) =0 for n > 2.
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Tor and Ext computations

Proposition
For all abelian groups A and B :

© Tor’(A, B) is a torsion abelian group.
Q@ Tor%(A,B) =0 for n > 2.

Proof

@ WLOG, we can assume that A is finitely generated Z-module.
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© Tor’(A, B) is a torsion abelian group.
Q@ Tor%(A,B) =0 for n > 2.

Proof

o WLOG, we can assume that A is finitely generated Z-module. (left adjoint

functors preserve colimits and any module is direct limits of its finitely
generated submodules)
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Tor and Ext computations

Proposition
For all abelian groups A and B :

© Tor’(A, B) is a torsion abelian group.
Q@ Tor%(A,B) =0 for n > 2.

Proof

o WLOG, we can assume that A is finitely generated Z-module. (left adjoint
functors preserve colimits and any module is direct limits of its finitely
generated submodules)

@ By structure theorem of finitely generated abelian groups we can write

A2 OL/mZ & - D L/msZ

for some integers r,mq, -+ ,ms.
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Tor and Ext computations

Proposition
For all abelian groups A and B :

© Tor’(A, B) is a torsion abelian group.
Q@ Tor%(A,B) =0 for n > 2.

Proof

o WLOG, we can assume that A is finitely generated Z-module. (left adjoint
functors preserve colimits and any module is direct limits of its finitely

generated submodules)
@ By structure theorem of finitely generated abelian groups we can write
A2 OL/mZ & - D L/msZ
for some integers r,mq, -+ ,ms.

o Tor”(Z",—) vanishes for all n # 0.
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Tor and Ext computations

Proposition
For all abelian groups A and B :

© Tor’(A, B) is a torsion abelian group.
Q@ Tor%(A,B) =0 for n > 2.

Proof

o WLOG, we can assume that A is finitely generated Z-module. (left adjoint

functors preserve colimits and any module is direct limits of its finitely
generated submodules)

@ By structure theorem of finitely generated abelian groups we can write

A2 OL/mZ & - D L/msZ
for some integers r,mq, -+ ,ms.

o Tor’(7Z", ) vanishes for all n # 0.

e So Tor%(A, B) = Tor%(Z/m1Z,B) & - - - ® Tor%(Z/m.Z, B).

Ajay Prajapati MTH613A: Rings and Modules
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Tor and Ext computations

Calculation

Take R = Z/mZ and A = Z,/dZ with d | m,
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Tor and Ext computations

Calculation
Take R =Z/mZ and A = Z/dZ with d | m, then we can use the periodic free
resolution

o 2mz2 ™8 2mz - ZmZ s 7)dZ — 0
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Tor and Ext computations

Calculation

Take R =Z/mZ and A = Z/dZ with d | m, then we can use the periodic free
resolution

o 2mz2 ™8 2mz - ZmZ s 7)dZ — 0
to see that for all Z/mZ-modules B we have
B/dB ifn=0

Tor’/™%(7,/dZ, B) = { {b€ B : db=0}/(m/d)B if nis odd, n > 0
{b€e B:(m/d)b=0}/dB if nis even, n >0
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Tor and Ext computations

Calculation

Take R =Z/mZ and A = Z/dZ with d | m, then we can use the periodic free
resolution

o 2mz2 ™8 2mz - ZmZ s 7)dZ — 0
to see that for all Z/mZ-modules B we have

B/dB ifn=0
Tor’/™%(7,/dZ, B) = { {b€ B : db=0}/(m/d)B if nis odd, n > 0
{b€e B:(m/d)b=0}/dB if n is even, n > 0

In particular, if d? | m and take B = Z/dZ then we get that

TorZ/™2(Z./dZ., Z./dZ) = Z./dZ for all n.
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Calculations

e Exty (A, B) =0 for n > 2 and all abelian groups A, B.
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Calculations
e Exty; (A, B) =0 for n > 2 and all abelian groups A, B.

@ (Proof) Embed B in an injective abelian group I°; the quotient I' is
divisible, hence injective.
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Calculations
e Exty; (A, B) =0 for n > 2 and all abelian groups A, B.

@ (Proof) Embed B in an injective abelian group I°; the quotient I' is
divisible, hence injective. Therefore, Ext*(A, B) is the cohomology of

0 — Hom(A, I°) — Hom(A, I') — 0
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Calculations
e Exty; (A, B) =0 for n > 2 and all abelian groups A, B.

@ (Proof) Embed B in an injective abelian group I°; the quotient I' is
divisible, hence injective. Therefore, Ext*(A, B) is the cohomology of

0 — Hom(A, I°) — Hom(A, I') — 0

o Let A =7/mZ then

Hom(Z/mZ,B) = B[m] ifn=20
Exty (Z/mZ,B) = < B/mB ifn=1
0 if n > 2.
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Calculations
e Exty; (A, B) =0 for n > 2 and all abelian groups A, B.

@ (Proof) Embed B in an injective abelian group I°; the quotient I' is
divisible, hence injective. Therefore, Ext*(A, B) is the cohomology of

0 — Hom(A, I°) — Hom(A, I') — 0

o Let A =7/mZ then

Hom(Z/mZ, B) = B[m] ifn=20
Exty (Z/mZ,B) = < B/mB ifn=1
0 if n > 2.

To see this, use the projective resolution

0 —Z 52 —7Z/mZ—0

of Z/mZ and now Ext* is the homology of 0 — B -+ B — 0.
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Calculations
@ When R =7Z/mZ and B = Z/dZ with d | m, we have

0 — 2/dZ -5 Z/mZ % Z/mZ ™08 7/mZ - 7)mz L8 -

an infinite periodic injective resolution of B.
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Calculations
@ When R =7Z/mZ and B = Z/dZ with d | m, we have

0 — 2/dZ -5 Z/mZ % Z/mZ ™08 7/mZ - 7)mz L8 -

an infinite periodic injective resolution of B.

o Let A* = Homp(A,Z/mZ) denote the Pontryagin dual of of an R-module
A. Then
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Calculations
@ When R =7Z/mZ and B = Z/dZ with d | m, we have

0 — 2/dZ -5 Z/mZ % Z/mZ ™08 7/mZ - 7)mz L8 -

an infinite periodic injective resolution of B.

o Let A* = Homp(A,Z/mZ) denote the Pontryagin dual of of an R-module

A. Then
Hom(A,Z/dZ)
Extg/mZ(A,Z/dZ) =q{feA* :(m/d)f =0}/dA*
{f € A* . df =0}/(m/d)A*

ifn=20
if nisodd, n >0

if nis even, n >0
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Calculations
@ When R =7Z/mZ and B = Z/dZ with d | m, we have

0 — 2/dZ -5 Z/mZ % Z/mZ ™08 7/mZ - 7)mz L8 -

an infinite periodic injective resolution of B.

o Let A* = Homp(A,Z/mZ) denote the Pontryagin dual of of an R-module
A. Then

Hom(A, Z/dZ) =10
Exty ,n7(A, Z/dZ) = { {f € A* : (m/d)f = 0}/dA* if nis odd, n >

{feA*:df =0}/(m/d)A* if n is even, n >0

e In particular, if d* | m, then

Ext} .z (Z/dZ, Z/dZ) = Z/dZ for all n.

0
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Definition

Let A be a right R-module.
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Definition
Let A be a right R-module.

@ The projective dimension pd(A) is the minimum integer n (if it exists) such
that there is a resolution of A by projective modules

0O0—PFP,— - —P —P—A—0
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Definition
Let A be a right R-module.

@ The projective dimension pd(A) is the minimum integer n (if it exists) such
that there is a resolution of A by projective modules

0O0—PFP,— - —P —P—A—0

@ The injective dimension id(A) is the minimum integer n (if it exists) such
that there is a resolution of A by injective modules

0—A—E"—SFE' —... SE" 0.
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Definition
Let A be a right R-module.

@ The projective dimension pd(A) is the minimum integer n (if it exists) such
that there is a resolution of A by projective modules

0O0—PFP,— - —P —P—A—0

@ The injective dimension id(A) is the minimum integer n (if it exists) such
that there is a resolution of A by injective modules

0—A—E"—SFE' —... SE" 0.

@ The flat dimension fd(A) is the minimum integer n (if it exists) such that
there is a resolution of A by flat modules

0 —F, — - —F —F—A—0
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Definition
Let A be a right R-module.

@ The projective dimension pd(A) is the minimum integer n (if it exists) such
that there is a resolution of A by projective modules

0O0—PFP,— - —P —P—A—0

@ The injective dimension id(A) is the minimum integer n (if it exists) such
that there is a resolution of A by injective modules

0—A—E"—SFE' —... SE" 0.

@ The flat dimension fd(A) is the minimum integer n (if it exists) such that
there is a resolution of A by flat modules

0 —F, — - —F —F—A—0

If no finite resolution exists, we set pd(A), id(A), or fd(A) equal to oco.
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Global Dimension Theorem

The following numbers are the same for any ring R:
@ sup{id(B) : B € Mod-R}
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The following numbers are the same for any ring R:
@ sup{id(B) : B € Mod-R}
@ sup{pd(4) : A € Mod-R}
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Global Dimension Theorem
The following numbers are the same for any ring R:
@ sup{id(B) : B € Mod-R}
@ sup{pd(4) : A € Mod-R}
@ sup{pd(R/I): I is a right ideal of R}
Q sup{d: Ext%(A, B) # 0 for some right modules A, B}.
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Global Dimension Theorem
The following numbers are the same for any ring R:
@ sup{id(B) : B € Mod-R}
@ sup{pd(4) : A € Mod-R}
@ sup{pd(R/I): I is a right ideal of R}
Q sup{d: Ext%(A, B) # 0 for some right modules A, B}.

This common number (possibly co) is called the (right) global dimension of R,
r.gl.dim(R).
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Tor-Dimension Theorem

The following numbers are the same for any ring R:
@ sup{fd(A): Ais a right R-module}
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Tor-Dimension Theorem
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Tor-Dimension Theorem
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@ sup{fd(A): Ais a right R-module}
@ sup{fd(R/J): Jis a right ideal of R}
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Tor-Dimension Theorem
The following numbers are the same for any ring R:
@ sup{fd(A): Ais a right R-module}
@ sup{fd(R/J): Jis a right ideal of R}
@ sup{fd(B): B is a left R-module}
@ sup{fd(R/I): I is a left ideal of R}
Q sup{d: Tor}(A, B) # 0. for some R-modules A, B}
This common number (possibly oo) is called the Tor-dimension of R.

Examples

@ Every field has global and Tor dimension 0.
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Tor-Dimension Theorem
The following numbers are the same for any ring R:
Q sup{fd(A): Ais a right R-module}
@ sup{fd(R/J): Jis a right ideal of R}
@ sup{fd(B): B is a left R-module}
@ sup{fd(R/I): I is a left ideal of R}
Q sup{d: Tor}(A, B) # 0. for some R-modules A, B}
This common number (possibly oo) is called the Tor-dimension of R.

Examples
@ Every field has global and Tor dimension 0.
@ R = Z has both global and Tor dimension 1.
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Tor-Dimension Theorem
The following numbers are the same for any ring R:
Q sup{fd(A): Ais a right R-module}
@ sup{fd(R/J): Jis a right ideal of R}
@ sup{fd(B): B is a left R-module}
@ sup{fd(R/I): I is a left ideal of R}
Q sup{d: Tor}(A, B) # 0. for some R-modules A, B}
This common number (possibly oo) is called the Tor-dimension of R.

Examples
@ Every field has global and Tor dimension 0.
@ R = Z has both global and Tor dimension 1.
e If R = Z/mZ with some p?|m then R has both global and Tor dimension cc.
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Tor-Dimension Theorem
The following numbers are the same for any ring R:
Q sup{fd(A): Ais a right R-module}
@ sup{fd(R/J): Jis a right ideal of R}
@ sup{fd(B): B is a left R-module}
@ sup{fd(R/I): I is a left ideal of R}
Q sup{d: Tor}(A, B) # 0. for some R-modules A, B}
This common number (possibly oo) is called the Tor-dimension of R.

Examples
@ Every field has global and Tor dimension 0.
@ R = Z has both global and Tor dimension 1.
e If R = Z/mZ with some p?|m then R has both global and Tor dimension cc.

@ Since every projective module is flat, fd(M) < pd(M) for every
M € Mod-R.
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Tor-Dimension Theorem
The following numbers are the same for any ring R:
Q sup{fd(A): Ais a right R-module}
@ sup{fd(R/J): Jis a right ideal of R}
@ sup{fd(B): B is a left R-module}
@ sup{fd(R/I): I is a left ideal of R}
Q sup{d: Tor}(A, B) # 0. for some R-modules A, B}
This common number (possibly oo) is called the Tor-dimension of R.

Examples
@ Every field has global and Tor dimension 0.
@ R = Z has both global and Tor dimension 1.
e If R = Z/mZ with some p?|m then R has both global and Tor dimension cc.

@ Since every projective module is flat, fd(M) < pd(M) for every
M € Mod-R.

e For R =7, fd(Q) = 0 whereas pd(Q) = 1.
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Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A:
Q pd(A) <d.
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Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma
The following are equivalent for a right R-module A:
Q pd(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules B.
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Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma
The following are equivalent for a right R-module A:
Q pd(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules B.
Q Ext%™ (A, B) = 0 for all R-modules B.
Q If

0—My—PFPj 1 — Py 9g——P—F—A4A—0

is any resolution with P’s projective,
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Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma
The following are equivalent for a right R-module A:
Q pd(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules B.
Q Ext%™ (A, B) = 0 for all R-modules B.
Q If

0—Myg—PFPy—1 —Py9o——P—P—A—0

is any resolution with P's projective, then the syzygy M, is also projective.

Proof
Q Clearly (4) = (1) = (2) = (3).
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Preparation of proof of Global Dimension Theorem
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Q pd(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules B.
Q Ext%™ (A, B) = 0 for all R-modules B.
Q If

0—Myg—PFPy—1 —Py9o——P—P—A—0

is any resolution with P's projective, then the syzygy M, is also projective.

Proof
Q Clearly (4) = (1) = (2) = (3).
@ By dimension shifting Ext“™ (A, B) = Ext' (Mg, B).
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Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma
The following are equivalent for a right R-module A:
Q pd(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules B.
Q Ext%™ (A, B) = 0 for all R-modules B.
Q If

0—Myg—PFPy—1 —Py9o——P—P—A—0

is any resolution with P's projective, then the syzygy M, is also projective.

Proof
Q Clearly (4) = (1) = (2) = (3).
@ By dimension shifting Ext“™ (A, B) = Ext' (Mg, B).
@ My is projective iff Exty (Mg, B) = 0 for all B.
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Preparation of proof of Global Dimension Theorem

Injective Dimension Lemma

The following are equivalent for a right R-module B:
Q id(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules A.
Q Ext}™ (A, B) = 0 for all R-modules A.

QIf0—»B——FE —FE' — ... s FE1 3 M?——0isany
resolution with the E* injective, then the syzygy M¢ is also injective.
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Q id(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules A.
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B € Mod-R is injective <= ExtR(R/I, B) = 0 for all right ideals 1.
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The following are equivalent for a right R-module B:
Q id(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules A.
Q Ext}™ (A, B) = 0 for all R-modules A.

QIf0—»B——FE —FE' — ... s FE1 3 M?——0isany
resolution with the E* injective, then the syzygy M¢ is also injective.

Lemma
B € Mod-R is injective <= ExtR(R/I, B) = 0 for all right ideals 1.

Proof
@ Apply Hom(—,B) to 0 — I — R — R/I — 0, we see that

0 — Hom(R/I, B) — Hom(R, B) — Hom(I, B) — Ext'(R/I, B) — 0

is exact.
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Preparation of proof of Global Dimension Theorem

Injective Dimension Lemma

The following are equivalent for a right R-module B:
Q id(A) <d.
@ Exti(A,B) =0 for all n > d and all R-modules A.
Q Ext}™ (A, B) = 0 for all R-modules A.

QIf0—»B——FE —FE' — ... s FE1 3 M?——0isany
resolution with the E* injective, then the syzygy M¢ is also injective.

Lemma
B € Mod-R is injective <= ExtR(R/I, B) = 0 for all right ideals 1.

Proof
@ Apply Hom(—,B) to 0 — I — R — R/I — 0, we see that

0 — Hom(R/I, B) — Hom(R, B) — Hom(I, B) — Ext'(R/I, B) — 0

is exact. Use Baer's criterion.
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Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:
Q sup{id(B) : B € Mod-R}
@ sup{pd(4) : A € Mod-R}
@ sup{pd(R/I): I is a right ideal of R}
Q@ sup{d: Ext%(A, B) # 0 for some right modules A, B}.
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Proof
@ By projective and injective dimension lemmas, sup(2) = sup(4) = sup(1).

=su
@ Since sup(1) = sup(2) > sup(3), want to prove sup(3) > sup(1).
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@ Since sup(1) = sup(2) > sup(3), want to prove sup(3) > sup(1). Suppose
not and let d = sup(pd(R/I)) and assume id(B) > d for some B € Mod-R.
@ For this B, choose a resolution
0—+B—E°—> E' - ... 5 B4=1 5 M — 0 with the E s injective.
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@ For this B, choose a resolution
0—+B—E°—> E' - ... 5 B4=1 5 M — 0 with the E s injective.

@ Then for all right ideals I we have

0 = Ext4™ (R/I, B) = Extk(R/I, M).

by dimension shifting.
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Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:
Q sup{id(B) : B € Mod-R}
Q sup{pd(A) : A € Mod-R}
@ sup{pd(R/I): I is a right ideal of R}
Q@ sup{d: Ext%(A, B) # 0 for some right modules A, B}.

Proof
@ By projective and injective dimension lemmas, sup(2) = sup(4) = sup(1).

@ Since sup(1l) = sup(2) > sup(3), want to prove sup(3) > sup(1). Suppose
not and let d = sup(pd(R/I)) and assume id(B) > d for some B € Mod-R.

@ For this B, choose a resolution
0—+B—E°—> E' - ... 5 B4=1 5 M — 0 with the E s injective.

@ Then for all right ideals I we have

0 = Ext4™ (R/I, B) = Extk(R/I, M).

by dimension shifting. This implies M is injective, contradiction.
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The Tor-dimension theorem can be proven similarly.
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The Tor-dimension theorem can be proven similarly.

Flat Dimension Lemma
The following are equivalent for a right R-module A:
@ fd(4) <d.
Q@ Tor’(A, B) = 0 for all n > d and all left R-modules B.
@ Torl, (A, B) =0 for all left R-modules B.
Q If

0—My—Fy31—F; 59— —F —Fy—A—0

is a resolution with all F; € Flat-R, then the syzygy M, is also flat.
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The Tor-dimension theorem can be proven similarly.

Flat Dimension Lemma
The following are equivalent for a right R-module A:
@ fd(4) <d.
Q@ Tor’(A, B) = 0 for all n > d and all left R-modules B.
@ Torl, (A, B) =0 for all left R-modules B.
Q If

0—My—Fy31—F; 59— —F —Fy—A—0

is a resolution with all F; € Flat-R, then the syzygy M, is also flat.

Lemma
B € R-Mod is flat <= Torf(R/I, B) = 0 for all right ideals I.
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Noetherian Rings

Proposition

If R is right noetherian, then

o fd(A) = pd(A) for every finitely generated R-module A.
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Noetherian Rings

Proposition

If R is right noetherian, then

o fd(A) = pd(A) for every finitely generated R-module A.
e Tor —dim(R) = r.gl. dim(R).
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Noetherian Rings

Proposition
If R is right noetherian, then

o fd(A) = pd(A) for every finitely generated R-module A.
e Tor —dim(R) = r.gl. dim(R).

Proof

@ Since we can compute Tor — dim(R) and r.gl. dim(R) by the modules R/I,
it suffices to prove (1).
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@ Since fd(A) < pd(A), it suffices to prove that if fd(A) = n then pd(A4) < n.
@ Because R is noetherian, A is noetherian R-module and there is a resolution

0—M —P,_1—--—P —F—A—0

where P; are f.g. free R-modules and M is f.p.
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Noetherian Rings

Proposition

If R is right noetherian, then
o fd(A) = pd(A) for every finitely generated R-module A.
e Tor —dim(R) = r.gl. dim(R).

Proof

@ Since we can compute Tor — dim(R) and 7.gl. dim(R) by the modules R/I,
it suffices to prove (1).

@ Since fd(A) < pd(A), it suffices to prove that if fd(A) = n then pd(A4) < n.
@ Because R is noetherian, A is noetherian R-module and there is a resolution

0—M —P,_1—--—P —F—A—0

where P; are f.g. free R-modules and M is f.p.
e M is flat R-module.

o (Lemma) Every finitely presented flat R-module is projective.
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Theorem

The following are equivalent for every ring R, where by " R module” we mean
either left R-module or right R-module.
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Theorem

The following are equivalent for every ring R, where by " R module” we mean
either left R-module or right R-module.

@ R is semi-simple.

@ R has (left and/or right) global dimension 0.
© Every R-module is projective.

@ Every R-module is injective.

@ R is noetherian, and every R-module is flat.

@ R is noetherian and has Tor-dimension 0.

Theorem
The following are equivalent for every ring R:
@ R is von Neumann regular.
@ R has Tor-dimension 0.
© Every R-module is flat.
@ R/I is projective for every finitely generated ideal I.
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Thank You
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