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Definition
Let F : A −→ B be a right exact functor between two abelian categories. Assume
that A has enough projectives.

Then we define left derived functors LnF of F as

LnF (A) := Hn(F (P )) (for all n ≥ 0)

for any projective resolution P −→ A −→ 0.

Now we choose F = −⊗R RNS : Mod-R −→ Mod-S in above definition and
define

TorRn (M,N) := LnF (MR) = Hn(P ⊗R RNS)

for any projective resolution P −→ M −→ 0 of M in Mod-R.
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Definition
Let F : A −→ B be a left exact functor between two abelian categories. Assume
that A has enough injectives.

Then we define right derived functors RnF of F as

RnF (A) := Hn(F (I )) for all n ≥ 0

and for any injective resolution 0 −→ A −→ I .

Now we choose F = HomR(MR,−) : Mod-R −→ Ab in above definition and
define

ExtnR(M,N) := Rn HomR(MR,−)(A) = Hn(HomR(MR, I ))

for any injective resolution 0 −→ N −→ I of N in Mod-R.

Remark: We can also use projective resolution of MR to compute ExtnR(M,N)
(recall HomR(−, NR) is contravariant). This follows from results in Weibel,
section 2.7 (specifically theorem 2.7.6).
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Tor and Ext computations

Calculation
Recall from last class that for any abelian group B

TorZn(Z/mZ, B) =


B/mB if n = 0

B[m] = {b ∈ B : mb = 0} if n = 1

0 for n ≥ 2

To see this, use the projective resolution

0 −→ Z m−→ Z −→ Z/mZ −→ 0

of Z/mZ and now Tor∗(Z/mZ, B) is the homology of the complex

0 −→ B
m−→ B −→ 0.
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Tor and Ext computations

Proposition

For all abelian groups A and B :

1 TorZ1 (A,B) is a torsion abelian group.

2 TorZn(A,B) = 0 for n ≥ 2.

Proof

WLOG, we can assume that A is finitely generated Z-module. (left adjoint
functors preserve colimits and any module is direct limits of its finitely
generated submodules)

By structure theorem of finitely generated abelian groups we can write

A ∼= Zr ⊕ Z/m1Z⊕ · · · ⊕ Z/msZ

for some integers r,m1, · · · ,ms.

TorZn(Zr,−) vanishes for all n ̸= 0.

So TorZn(A,B) ∼= TorZn(Z/m1Z, B)⊕ · · · ⊕ TorZn(Z/msZ, B).
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Tor and Ext computations

Calculation

Take R = Z/mZ and A = Z/dZ with d | m,

then we can use the periodic free
resolution

· · · d−→ Z/mZ m/d−→ Z/mZ d−→ Z/mZ ϵ−→ Z/dZ −→ 0

to see that for all Z/mZ-modules B we have

TorZ/mZ
n (Z/dZ, B) =


B/dB if n = 0

{b ∈ B : db = 0}/(m/d)B if n is odd, n > 0

{b ∈ B : (m/d)b = 0}/dB if n is even, n > 0

In particular, if d2 | m and take B = Z/dZ then we get that

TorZ/mZ
n (Z/dZ,Z/dZ) = Z/dZ for all n.
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Calculations

ExtnZ(A,B) = 0 for n ≥ 2 and all abelian groups A,B.

(Proof) Embed B in an injective abelian group I0; the quotient I1 is
divisible, hence injective. Therefore, Ext∗(A,B) is the cohomology of

0 −→ Hom(A, I0) −→ Hom(A, I1) −→ 0

Let A = Z/mZ then

ExtnZ(Z/mZ, B) =


Hom(Z/mZ, B) = B[m] if n = 0

B/mB if n = 1

0 if n ≥ 2.

To see this, use the projective resolution

0 −→ Z m−→ Z −→ Z/mZ −→ 0

of Z/mZ and now Ext∗ is the homology of 0 −→ B
m−→ B −→ 0.
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Calculations

When R = Z/mZ and B = Z/dZ with d | m, we have

0 −→ Z/dZ i−→ Z/mZ d−→ Z/mZ m/d−→ Z/mZ d−→ Z/mZ m/d−→ · · · ,

an infinite periodic injective resolution of B.

Let A∗ = HomR(A,Z/mZ) denote the Pontryagin dual of of an R-module
A. Then

ExtnZ/mZ(A,Z/dZ) =


Hom(A,Z/dZ) if n = 0

{f ∈ A∗ : (m/d)f = 0}/dA∗ if n is odd, n > 0

{f ∈ A∗ : df = 0}/(m/d)A∗ if n is even, n > 0

In particular, if d2 | m, then

ExtnZ/nZ(Z/dZ,Z/dZ) ∼= Z/dZ for all n.
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Definition
Let A be a right R-module.

The projective dimension pd(A) is the minimum integer n (if it exists) such
that there is a resolution of A by projective modules

0 −→ Pn −→ · · · −→ P1 −→ P0 −→ A −→ 0

The injective dimension id(A) is the minimum integer n (if it exists) such
that there is a resolution of A by injective modules

0 −→ A −→ E0 −→ E1 −→ · · · −→ En −→ 0.

The flat dimension fd(A) is the minimum integer n (if it exists) such that
there is a resolution of A by flat modules

0 −→ Fn −→ · · · −→ F1 −→ F0 −→ A −→ 0

If no finite resolution exists, we set pd(A), id(A), or fd(A) equal to ∞.
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Global Dimension Theorem
The following numbers are the same for any ring R:

1 sup{id(B) : B ∈ Mod-R}

2 sup{pd(A) : A ∈ Mod-R}
3 sup{pd(R/I) : I is a right ideal of R}
4 sup{d : ExtdR(A,B) ̸= 0 for some right modules A,B}.

This common number (possibly ∞) is called the (right) global dimension of R,
r.gl.dim(R).
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Tor-Dimension Theorem
The following numbers are the same for any ring R:

1 sup{fd(A) : A is a right R-module}

2 sup{fd(R/J) : J is a right ideal of R}
3 sup{fd(B) : B is a left R-module}
4 sup{fd(R/I) : I is a left ideal of R}
5 sup{d : TorRd (A,B) ̸= 0. for some R-modules A,B}

This common number (possibly ∞) is called the Tor-dimension of R.

Examples

Every field has global and Tor dimension 0.

R = Z has both global and Tor dimension 1.

If R = Z/mZ with some p2|m then R has both global and Tor dimension ∞.

Since every projective module is flat, fd(M) ≤ pd(M) for every
M ∈ Mod-R.

For R = Z, fd(Q) = 0 whereas pd(Q) = 1.
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Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A:

1 pd(A) ≤ d.

2 ExtnR(A,B) = 0 for all n > d and all R-modules B.

3 Extd+1
R (A,B) = 0 for all R-modules B.

4 If

0 −→ Md −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ A −→ 0

is any resolution with P ’s projective, then the syzygy Md is also projective.

Proof
1 Clearly (4) =⇒ (1) =⇒ (2) =⇒ (3).

2 By dimension shifting Extd+1(A,B) ∼= Ext1(Md, B).

3 Md is projective iff Ext1R(Md, B) = 0 for all B.

Ajay Prajapati MTH613A: Rings and Modules 15 / 21



Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A:

1 pd(A) ≤ d.

2 ExtnR(A,B) = 0 for all n > d and all R-modules B.

3 Extd+1
R (A,B) = 0 for all R-modules B.

4 If

0 −→ Md −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ A −→ 0

is any resolution with P ’s projective, then the syzygy Md is also projective.

Proof
1 Clearly (4) =⇒ (1) =⇒ (2) =⇒ (3).

2 By dimension shifting Extd+1(A,B) ∼= Ext1(Md, B).

3 Md is projective iff Ext1R(Md, B) = 0 for all B.

Ajay Prajapati MTH613A: Rings and Modules 15 / 21



Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A:

1 pd(A) ≤ d.

2 ExtnR(A,B) = 0 for all n > d and all R-modules B.

3 Extd+1
R (A,B) = 0 for all R-modules B.

4 If

0 −→ Md −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ A −→ 0

is any resolution with P ’s projective, then the syzygy Md is also projective.

Proof
1 Clearly (4) =⇒ (1) =⇒ (2) =⇒ (3).

2 By dimension shifting Extd+1(A,B) ∼= Ext1(Md, B).

3 Md is projective iff Ext1R(Md, B) = 0 for all B.

Ajay Prajapati MTH613A: Rings and Modules 15 / 21



Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A:

1 pd(A) ≤ d.

2 ExtnR(A,B) = 0 for all n > d and all R-modules B.

3 Extd+1
R (A,B) = 0 for all R-modules B.

4 If

0 −→ Md −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ A −→ 0

is any resolution with P ’s projective,

then the syzygy Md is also projective.

Proof
1 Clearly (4) =⇒ (1) =⇒ (2) =⇒ (3).

2 By dimension shifting Extd+1(A,B) ∼= Ext1(Md, B).

3 Md is projective iff Ext1R(Md, B) = 0 for all B.

Ajay Prajapati MTH613A: Rings and Modules 15 / 21



Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A:

1 pd(A) ≤ d.

2 ExtnR(A,B) = 0 for all n > d and all R-modules B.

3 Extd+1
R (A,B) = 0 for all R-modules B.

4 If

0 −→ Md −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ A −→ 0

is any resolution with P ’s projective, then the syzygy Md is also projective.

Proof
1 Clearly (4) =⇒ (1) =⇒ (2) =⇒ (3).

2 By dimension shifting Extd+1(A,B) ∼= Ext1(Md, B).

3 Md is projective iff Ext1R(Md, B) = 0 for all B.

Ajay Prajapati MTH613A: Rings and Modules 15 / 21



Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A:

1 pd(A) ≤ d.

2 ExtnR(A,B) = 0 for all n > d and all R-modules B.

3 Extd+1
R (A,B) = 0 for all R-modules B.

4 If

0 −→ Md −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ A −→ 0

is any resolution with P ’s projective, then the syzygy Md is also projective.

Proof
1 Clearly (4) =⇒ (1) =⇒ (2) =⇒ (3).

2 By dimension shifting Extd+1(A,B) ∼= Ext1(Md, B).

3 Md is projective iff Ext1R(Md, B) = 0 for all B.

Ajay Prajapati MTH613A: Rings and Modules 15 / 21



Preparation of proof of Global Dimension Theorem

Projective Dimension Lemma

The following are equivalent for a right R-module A:

1 pd(A) ≤ d.

2 ExtnR(A,B) = 0 for all n > d and all R-modules B.

3 Extd+1
R (A,B) = 0 for all R-modules B.

4 If

0 −→ Md −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ A −→ 0

is any resolution with P ’s projective, then the syzygy Md is also projective.

Proof
1 Clearly (4) =⇒ (1) =⇒ (2) =⇒ (3).

2 By dimension shifting Extd+1(A,B) ∼= Ext1(Md, B).

3 Md is projective iff Ext1R(Md, B) = 0 for all B.

Ajay Prajapati MTH613A: Rings and Modules 15 / 21



Preparation of proof of Global Dimension Theorem

Injective Dimension Lemma

The following are equivalent for a right R-module B:

1 id(A) ≤ d.

2 ExtnR(A,B) = 0 for all n > d and all R-modules A.

3 Extd+1
R (A,B) = 0 for all R-modules A.

4 If 0 −→ B −→ E0 −→ E1 −→ · · · −→ Ed−1 −→ Md −→ 0 is any
resolution with the Ei injective, then the syzygy Md is also injective.

Lemma

B ∈ Mod-R is injective ⇐⇒ Ext1R(R/I,B) = 0 for all right ideals I.

Proof
1 Apply Hom(−, B) to 0 −→ I −→ R −→ R/I −→ 0, we see that

0 −→ Hom(R/I,B) −→ Hom(R,B) −→ Hom(I,B) −→ Ext1(R/I,B) −→ 0

is exact. Use Baer’s criterion.
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Proof of Global Dimension Theorem

[Global Dimension Theorem] The following numbers are the same:

1 sup{id(B) : B ∈ Mod-R}
2 sup{pd(A) : A ∈ Mod-R}
3 sup{pd(R/I) : I is a right ideal of R}
4 sup{d : ExtdR(A,B) ̸= 0 for some right modules A,B}.

Proof
1 By projective and injective dimension lemmas, sup(2) = sup(4) = sup(1).

2 Since sup(1) = sup(2) ≥ sup(3), want to prove sup(3) ≥ sup(1). Suppose
not and let d = sup(pd(R/I)) and assume id(B) > d for some B ∈ Mod-R.

3 For this B, choose a resolution
0 → B → E0 → E1 → · · · → Ed−1 → M → 0 with the E ’s injective.

4 Then for all right ideals I we have

0 = Extd+1
R (R/I,B) ∼= Ext1R(R/I,M).

by dimension shifting. This implies M is injective, contradiction.
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by dimension shifting. This implies M is injective, contradiction.
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The Tor-dimension theorem can be proven similarly.

Flat Dimension Lemma
The following are equivalent for a right R-module A:

1 fd(A) ≤ d.

2 TorRn (A,B) = 0 for all n > d and all left R-modules B.

3 TorRd+1(A,B) = 0 for all left R-modules B.

4 If

0 −→ Md −→ Fd−1 −→ Fd−2 −→ · · · −→ F1 −→ F0 −→ A −→ 0

is a resolution with all Fi ∈ Flat-R, then the syzygy Md is also flat.

Lemma

B ∈ R-Mod is flat ⇐⇒ TorR1 (R/I,B) = 0 for all right ideals I.
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Noetherian Rings

Proposition

If R is right noetherian, then

fd(A) = pd(A) for every finitely generated R-module A.

Tor−dim(R) = r.gl.dim(R).

Proof

Since we can compute Tor−dim(R) and r.gl.dim(R) by the modules R/I,
it suffices to prove (1).

Since fd(A) ≤ pd(A), it suffices to prove that if fd(A) = n then pd(A) ≤ n.

Because R is noetherian, A is noetherian R-module and there is a resolution

0 −→ M −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ A −→ 0

where Pi are f.g. free R-modules and M is f.p.

M is flat R-module.

(Lemma) Every finitely presented flat R-module is projective.

Ajay Prajapati MTH613A: Rings and Modules 19 / 21



Noetherian Rings

Proposition

If R is right noetherian, then

fd(A) = pd(A) for every finitely generated R-module A.

Tor−dim(R) = r.gl.dim(R).

Proof

Since we can compute Tor−dim(R) and r.gl.dim(R) by the modules R/I,
it suffices to prove (1).

Since fd(A) ≤ pd(A), it suffices to prove that if fd(A) = n then pd(A) ≤ n.

Because R is noetherian, A is noetherian R-module and there is a resolution

0 −→ M −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ A −→ 0

where Pi are f.g. free R-modules and M is f.p.

M is flat R-module.

(Lemma) Every finitely presented flat R-module is projective.

Ajay Prajapati MTH613A: Rings and Modules 19 / 21



Noetherian Rings

Proposition

If R is right noetherian, then

fd(A) = pd(A) for every finitely generated R-module A.

Tor−dim(R) = r.gl.dim(R).

Proof

Since we can compute Tor−dim(R) and r.gl.dim(R) by the modules R/I,
it suffices to prove (1).

Since fd(A) ≤ pd(A), it suffices to prove that if fd(A) = n then pd(A) ≤ n.

Because R is noetherian, A is noetherian R-module and there is a resolution

0 −→ M −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ A −→ 0

where Pi are f.g. free R-modules and M is f.p.

M is flat R-module.

(Lemma) Every finitely presented flat R-module is projective.

Ajay Prajapati MTH613A: Rings and Modules 19 / 21



Noetherian Rings

Proposition

If R is right noetherian, then

fd(A) = pd(A) for every finitely generated R-module A.

Tor−dim(R) = r.gl.dim(R).

Proof

Since we can compute Tor−dim(R) and r.gl.dim(R) by the modules R/I,
it suffices to prove (1).

Since fd(A) ≤ pd(A), it suffices to prove that if fd(A) = n then pd(A) ≤ n.

Because R is noetherian, A is noetherian R-module and there is a resolution

0 −→ M −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ A −→ 0

where Pi are f.g. free R-modules and M is f.p.

M is flat R-module.

(Lemma) Every finitely presented flat R-module is projective.

Ajay Prajapati MTH613A: Rings and Modules 19 / 21



Noetherian Rings

Proposition

If R is right noetherian, then

fd(A) = pd(A) for every finitely generated R-module A.

Tor−dim(R) = r.gl.dim(R).

Proof

Since we can compute Tor−dim(R) and r.gl.dim(R) by the modules R/I,
it suffices to prove (1).

Since fd(A) ≤ pd(A), it suffices to prove that if fd(A) = n then pd(A) ≤ n.

Because R is noetherian, A is noetherian R-module and there is a resolution

0 −→ M −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ A −→ 0

where Pi are f.g. free R-modules and M is f.p.

M is flat R-module.

(Lemma) Every finitely presented flat R-module is projective.

Ajay Prajapati MTH613A: Rings and Modules 19 / 21



Noetherian Rings

Proposition

If R is right noetherian, then

fd(A) = pd(A) for every finitely generated R-module A.

Tor−dim(R) = r.gl.dim(R).

Proof

Since we can compute Tor−dim(R) and r.gl.dim(R) by the modules R/I,
it suffices to prove (1).

Since fd(A) ≤ pd(A), it suffices to prove that if fd(A) = n then pd(A) ≤ n.

Because R is noetherian, A is noetherian R-module and there is a resolution

0 −→ M −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ A −→ 0

where Pi are f.g. free R-modules and M is f.p.

M is flat R-module.

(Lemma) Every finitely presented flat R-module is projective.

Ajay Prajapati MTH613A: Rings and Modules 19 / 21



Noetherian Rings

Proposition

If R is right noetherian, then

fd(A) = pd(A) for every finitely generated R-module A.

Tor−dim(R) = r.gl.dim(R).

Proof

Since we can compute Tor−dim(R) and r.gl.dim(R) by the modules R/I,
it suffices to prove (1).

Since fd(A) ≤ pd(A), it suffices to prove that if fd(A) = n then pd(A) ≤ n.

Because R is noetherian, A is noetherian R-module and there is a resolution

0 −→ M −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ A −→ 0

where Pi are f.g. free R-modules and M is f.p.

M is flat R-module.

(Lemma) Every finitely presented flat R-module is projective.

Ajay Prajapati MTH613A: Rings and Modules 19 / 21



Theorem
The following are equivalent for every ring R, where by ”R module” we mean
either left R-module or right R-module.

1 R is semi-simple.

2 R has (left and/or right) global dimension 0.

3 Every R-module is projective.

4 Every R-module is injective.

5 R is noetherian, and every R-module is flat.

6 R is noetherian and has Tor-dimension 0.

Theorem
The following are equivalent for every ring R:

1 R is von Neumann regular.

2 R has Tor-dimension 0.

3 Every R-module is flat.

4 R/I is projective for every finitely generated ideal I.
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Thank You
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