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§1. Introduction

Recall that in last lecture of this course we were studying left derived functors of a right
exact functor and vice-versa, and then defined the Ext and Tor functors. This note will be
in direct continuation of it. In section 2 we will start by recalling the definitions of left and
right derived functors. Then we will do some computations of Ext and Tor groups which
will be used in section 3. In section 3 we will define three natural notion of dimension of a
module which will be used to define two notions of dimension, global and Tor, of a ring and
prove their characterizing properties. We end this note by giving a characterization of rings
of small dimension in section 4. The main reference for this note is [Wei95], sections 3.1, 3.2,
3.3, 4.1, and 4.2.

§2. Preliminaries and some calculations

Let us first recall the notions of left and right derived functors.

Definition 2.1. Let F : A −→ B be a right exact functor between two abelian categories.
Assume that A has enough projectives. Then we define left derived functors LnF of F as

LnF(A) := Hn(F(P )) for all n ≥ 0

and for any projective resolution P. −→ A −→ 0.

Now we choose F = −⊗R RNS : Mod-R −→ Mod-S in above definition and define

TorR
n (M, N) := LnF(MR) = Hn(P ⊗R RNS)

for any projective resolution P −→ M −→ 0 of M in Mod-R.

Definition 2.2. Let F : A −→ B be a left exact functor between two abelian categories.
Assume that A has enough injectives. Then we define right derived functors RnF of F as

RnF(A) := Hn(F(I )) for all n ≥ 0

and for any injective resolution 0 −→ A −→ I .

Now we choose F = HomR(MR,−) : Mod-R −→ Ab in above definition and define

Extn
R(M, N) := Rn HomR(MR,−)(A) = Hn(HomR(MR, I ))

for any injective resolution 0 −→ N −→ I of N in Mod-R.

Remark 2.3. We can also use projective resolution of MR to compute Extn
R(M, N) (recall

HomR(−, NR) is contravariant). This follows from results in Weibel, section 2.7 (specifically
theorem 2.7.6). Its proof proceeds by construction of a double complex from injective and
projective resolutions using tensor product.
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Now we do some Tor and Ext computations for some choice of R, A, and B.

Example 2.1. Recall from last class that

TorZ
n (Z/mZ, B) =


B/mB if n = 0
B[m] = {b ∈ B : mb = 0} if n = 1
0 for n ≥ 2

To see this, use the resolution

0 −→ Z
m−→ Z −→ Z/mZ −→ 0

of Z/mZ and now Tor∗(Z/mZ, B) is the homology of the complex 0 −→ B m−→ B −→ 0.

Now we recall a general fact about adjoints and limits which will be used in proof of propo-
sition 2.5 (proof can be found in [ML13], section V.5).

Theorem 2.4. [Limit Adjoint Theorem] Let L : A −→ B be left adjoint to a functor R :
B −→ A, where A and B are arbitrary categories. Then

1. L preserves all colimits (coproducts, direct limits, cokernels, etc.).

2. R preserves all limits (products, inverse limits, kernels, etc.).

Proposition 2.5. For all abelian groups A and B :

1. TorZ
1 (A, B) is a torsion abelian group.

2. TorZ
n (A, B) = 0 for n ≥ 2.

Proof. Because tensor product is left adjoint of Hom functor it preserves direct limits. As
direct limits are exact in Mod-R (see [Ati18], exercise 2.19) homology preserves direct limit
hence so does Tor. Now any module is direct limits of its finitely generated submodules
and direct limit of torsion group is again torsion, WLOG we can assume that A is finitely
generated Z-module. By structure theorem of finitely generated abelian groups we write

A ∼= Zr ⊕ Z/m1Z ⊕ · · · ⊕ Z/msZ

for some integers r, m1, · · · , ms. TorZ
n (Z

r,−) vanishes for all n ̸= 0. So

TorZ
n (A, B) ∼= TorZ

n (Z/m1Z, B)⊕ · · · ⊕ TorZ
n (Z/msZ, B).

By computations in example 2.1 the result follows.

Example 2.2. Take R = Z/mZ and A = Z/dZ with d | m, then we use the free resolution

· · · d−→ Z/mZ
m/d−→ Z/mZ

d−→ Z/mZ
ϵ−→ Z/d −→ 0
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to see that for all Z/mZ-modules B we have

TorZ/mZ
n (Z/dZ, B) =


B/dB if n = 0
{b ∈ B : db = 0}/(m/d)B if n is odd, n > 0
{b ∈ B : (m/d)b = 0}/dB if n is even, n > 0

In particular, if d2 | m and take B = Z/dZ then we get that TorZ/mZ
n (B, B) = Z/dZ.

Proposition 2.6. Extn
Z(A, B) = 0 for n ≥ 2 and all abelian groups A, B.

Proof. Embed B in an injective abelian group I0; the quotient I1 is divisible, hence injective.
Therefore, Ext∗(A, B) is the cohomology of 0 −→ Hom(A, I0) −→ Hom(A, I1) −→ 0.

Exercise 2.1. When R = Z/mZ and B = Z/dZ with d | m, show that

0 −→ Z/dZ
i−→ Z/mZ

d−→ Z/mZ
m/d−→ Z/mZ

d−→ Z/mZ
m/d−→ · · ·

is an infinite periodic injective resolution of B. Then compute the groups Extn
Z/mZ(A, Z/dZ)

in terms of A∗ = Hom(A, Z/mZ). In particular, show that if d2 | m, then

Extn
Z/nZ(Z/dZ, Z/dZ) ∼= Z/dZ for all n.

Proof. First we use Baer’s criterion to prove that R = Z/mZ is an injective R-module: Any
ideal of R is of the form eZ/mZ. The map f in the following diagram

0 eZ/mZ Z/mZ

Z/mZ

f g

will be determined by where it sends e. Now m
e f (e) = 0 in Z/mZ hence e | f (e). Now

define g by 1 7−→ f (e)
e which clearly extends f .

Note that Ext groups are cohomology of the following chain complex:

0 A∗ A∗ A∗ · · ·d m/d d

Like in example 2.2 we can deduce the following:

Extn
Z/mZ(A, Z/dZ) =


Hom(A, Z/dZ) if n = 0
{ f ∈ A∗ : (m/d) f = 0}/dA∗ if n is odd, n > 0
{ f ∈ A∗ : d f = 0}/(m/d)A∗ if n is even, n > 0
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Putting A = Z/dZ and using that A∗[m/d] = Hom(Z/dZ, Z/mZ)[m/d] = A∗ = m
d Z/mZ ∼=

Z/dZ and dA∗ = 0, the last part follows.

§3. Homological Dimension Theory

We clearly have three different notions of dimension of a module in terms of the length of
its projective, injective, and flat resolution.

Definition 3.1. Let A be a right R-module.

• The projective dimension pd(A) is the minimum integer n (if it exists) such that there is
a resolution of A by projective modules 0 −→ Pn −→ · · · −→ P1 −→ P0 −→ A −→ 0.

• The injective dimension id(A) is the minimum integer n (if it exists) such that there is a
resolution of A by injective modules 0 −→ A −→ E0 −→ E1 −→ · · · −→ En −→ 0.

• The flat dimension f d(A) is the minimum integer n (if it exists) such that there is a
resolution of A by flat modules 0 −→ Fn −→ · · · −→ F1 −→ F0 −→ A −→ 0.

If no finite resolution exists, we set pd(A), id(A), or f d(A) equal to ∞.

Now we want to define meaningful notion of homological dimension of a ring. One way
to do this is to take dimension of ring as a module over itself. But this does not give much
information about the ring. Instead we define projective dimension of A to be sup{pd(A) :
A ∈ Mod-R}. This is more useful notion of dimension because for example if this is 0 then
we know that all modules are projective. We have therorem 3.2 (resp. 3.3) which is used to
define this (resp. Flat version) notion. We will give its proof at the end.

Theorem 3.2. (Global Dimension Thm) The following numbers are same for any ring R:

1. sup{id(B) : B ∈ Mod-R}

2. sup{pd(A) : A ∈ Mod-R}

3. sup{pd(R/I) : I is a right ideal of R}

4. sup{d : Extd
R(A, B) ̸= 0 for some right modules A, B}.

This common number (possibly ∞) is called the (right) global dimension of R, r.gl. dim(R).

Theorem 3.3. (Tor-Dimension Theorem) The following numbers are same for any ring R:

1. sup{ f d(A) : A is a right R-module}

2. sup{ f d(R/J) : J is a right ideal of R}

3. sup{ f d(B) : B is a left R-module}

4. sup{ f d(R/I) : I is a left ideal of R}
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5. sup{d : TorR
d (A, B) ̸= 0. for some R-modules A, B}

This common number (possibly ∞) is called the Tor-dimension of R.

The following are global and Tor dimension of some rings.

• Every field has global and Tor dimension 0.

• R = Z has both global and Tor dimension 1. This is clear from proposition 2.5 and 2.6.

• If R = Z/mZ with some p2|m then R has both global and Tor dimension ∞. This is
clear from example 2.2 and exercise 2.1.

• Since every projective module is flat every projective resolution is flat resolution and
therefore f d(A) ≤ pd(A) for every A ∈ Mod-R.

• For R = Z, f d(Q) = 0 whereas pd(Q) = 1.

Proposition 3.4. [Dimension shifting] If 0 −→ M −→ P −→ A −→ 0 is exact with P
projective, show that LiF(A) ∼= Li−1F(M) for i ≥ 2 and that L1F(A) is the kernel of F(M) →
F(P). More generally, if

0 −→ Mm −→ Pm −→ Pm−1 −→ · · · −→ P0 −→ A −→ 0

is exact with the Pi projective, then LiF(A) ∼= Li−m−1F(Mm) for i ≥ m + 2.

Proof. If m = 0 then it is clear from the long exact sequence associated to this short exact
sequence. For m > 0, split this exact sequence into (m + 1) short exact sequences and then
apply the case m = 0 to each of them. At the end combine information to get the result.

Lemma 3.5. [Projective Dimension Lemma] TFAE for a right R-module A:

1. pd(A) ≤ d.

2. Extn
R(A, B) = 0 for all n > d and all right R-modules B.

3. Extd+1
R (A, B) = 0 for all R-modules B.

4. If
0 −→ Md −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ A −→ 0

is any resolution with the P’s projective, then the syzygy Md is also projective.

Proof. Since Ext∗(A, B) may be computed using a projective resolution of A, it is clear that
(4) =⇒ (1) =⇒ (2) =⇒ (3). If we are given a resolution of A as in (4), then
Extd+1(A, B) ∼= Ext1(Md, B) by dimension shifting. Now Md is projective iff Ext1(Md, B) = 0
for all B, so (3) implies (4).

The proof of following two lemmas is similar to the above lemma.
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Lemma 3.6. [Injective Dimension Lemma] TFAE for a right R-module B:

1. id(A) ≤ d.

2. Extn
R(A, B) = 0 for all n > d and all R-modules A.

3. Extd+1
R (A, B) = 0 for all R-modules A.

4. If 0 −→ B −→ E0 −→ E1 −→ · · · −→ Ed−1 −→ Md −→ 0 is any resolution with the
Ei injective, then the syzygy Md is also injective.

Lemma 3.7. [Flat Dimension Lemma] TFAE for a right R-module A:

1. f d(A) ≤ d.

2. TorR
n (A, B) = 0 for all n > d and all left R-modules B.

3. TorR
d+1(A, B) = 0 for all left R-modules B.

4. If 0 −→ Md −→ Fd−1 −→ Fd−2 −→ · · · −→ F1 −→ F0 −→ A −→ 0 is a resolution
with all Fi’s flat, then the syzygy Md is also flat.

Lemma 3.8. B ∈ Mod-R is injective ⇐⇒ Ext1
R(R/I, B) = 0 for all right ideals I.

Proof. Apply Hom(−, B) to 0 −→ I −→ R −→ R/I −→ 0, we see that

0 −→ Hom(R/I, B) −→ Hom(R, B) −→ Hom(I, B) −→ Ext1(R/I, B) −→ 0

is exact. By Baer’s criterion, B is injective ⇐⇒ Hom(R, B) −→ Hom(I, B) is surjective for
all right ideals I.

Proof. (Global dimension theorem) By projective and injective dimension lemmas, sup(2) =
sup(4) = sup(1). Since sup(1) = sup(2) ≥ sup(3), want to prove sup(3) ≥ sup(1). Sup-
pose not and let d = sup(pd(R/I)) and assume id(B) > d for some B ∈ Mod-R. For this B,
choose a resolution 0 −→ B −→ E0 −→ E1 −→ · · · −→ Ed−1 −→ M −→ 0 with the E ’s
injective. Then by dimension shifting, for all right ideals I we have

0 = Extd+1
R (R/I, B) ∼= Ext1

R(R/I, M).

This implies that M is injective by lemma 3.8 contradiction to assumption that id(B) > d.

The proof of Tor dimension theorem is almost identitical. For B ∈ R-Mod, let B∗ = Hom(B, Q/Z)
∈ Mod-R denote the Pontrygin dual of B. The following is analogue of 3.8.

Lemma 3.9. The following are equivalent for every B ∈ R-Mod:

1. B∗ is flat R-module.
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2. B∗ ∈ Mod-R is injective.

3. I ⊗R B ∼= IB = {x1b1 + · · ·+ xnbn : xi ∈ I, bi ∈ I} ⊂ B for every right ideal I of R.

4. TorR
1 (R/I, B) = 0 for all right ideals I.

Proof. For every inclusion A′ ⊂ A in Mod-R, we have the commutative diagram

Hom(A, B∗) Hom(A′, B∗)

(A ⊗ B)∗ = Hom(A ⊗ B, Q/Z) Hom(A′ ⊗ B, Q/Z) = (A′ ⊗ B)∗.

∼= ∼=

Now using the fact (easy to prove) that f : B −→ C is injective ⇐⇒ the dual map f ∗ :
B∗ −→ C∗ is surjective, we get

B∗ is injective ⇐⇒ (A ⊗ B)∗ → (A′ ⊗ B)∗ is surjective for all A′ ⊂ A
⇐⇒ A′ ⊗ B → A ⊗ B is injective for all A′ ⊂ A

which is if and only if B is flat. For ((2) ⇐⇒ (3)) using Baer’s criterion we get

B∗ is injective ⇐⇒ (R ⊗ B)∗ −→ (I ⊗ B)∗ is surjective for all I ⊂ R
⇐⇒ I ⊗ B −→ R ⊗ B is injective for all I
⇐⇒ I ⊗ B ∼= IB for all I.

((3) ⇐⇒ (4)) This follows immediately from the exact sequence 0 −→ Tor1(R/I, B) −→
I ⊗ B −→ B −→ B/IB −→ 0. Note that R/I ⊗R B ∼= B/IB for all right ideals I.

Proof. (Tor-dimension theorem) The flat dimension lemma (3.7) shows that sup(5) = sup(1) ≥
sup(2). The same lemma over Rop shows that sup(5) = sup(3) ≥ sup(4). We may assume
that sup(2) ≤ sup(4), that is, that d = sup{ f d(R/J) : J is a right ideal} is at most the supre-
mum over left ideals. We are done unless d is finite and f d(B) > d for some left R-module
B. For this B, choose a resolution 0 −→ M −→ Fd−1 −→ · · · −→ F0 −→ B −→ 0 with the Fi
flat. But then for all ideals J we have

0 = TorR
d+1(R/J, B) = TorR

1 (R/J, M)

We saw in lemma that this implies that M is flat, contradicting f d(B) > d.

Recall that f d(QZ) = 0 whereas pd(QZ) = 1. Now we see that if the module is finitely
generated over a Noetherian ring then this is not possible. First we prove a lemma.

Lemma 3.10. Every finitely presented flat R-module is projective.

Proof. For any A, M ∈ R-Mod there is a natural map

σ : A∗ ⊗R M −→ HomR(M, A)∗, f ⊗ m 7−→ (h 7−→ f (h(m)))

Claim: This map is an isomorphism for every finitely presented module M and for all A.
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Proof. First it is easy to see that σ is an isomorphism for M = R. Hence σ is an isomorphism
for M = Rn for all n (by additivity of tensor product and Hom functor in first variable).
Because M is f.p. we have Rm −→ Rn −→ M −→ 0 exact for some m, n.

A∗ ⊗ Rm A∗ ⊗ Rn A∗ ⊗ M 0

Hom(Rm, A)∗ Hom(Rn, A)∗ Hom(M, A)∗ 0

∼= ∼= σ

The upper row is exact because A∗ ⊗− is right exact. The lower row is exact because con-
travariant Hom(−, A) is left exact and the Pontrygin dual Hom(−, Q/Z) is exact because
Q/Z is injective. Now σ is an isomorphism by the five lemma.

Let M is a finitely presented R-module. Suppose we have a surjection B −→ C in R-Mod.
Then natural map C∗ −→ B∗ is injection. Now if M is flat then top arrow of the square

C∗ ⊗R M B∗ ⊗R M

Hom(M, C)∗ Hom(M, B)∗

∼= ∼=

is injective. Hence the bottom row is an injection which implies that Hom(M, B) −→
Hom(M, C) is surjective. Hence M is projective.

Proposition 3.11. If R is right noetherian, then

• f d(A) = pd(A) for every finitely generated R-module A.

• Tor−dim(R) = r.gl. dim(R).

Proof. Since we can compute Tor−dim(R) and r.gl. dim(R) by the modules R/I, it suffices
to prove (1). Since f d(A) ≤ pd(A), it suffices to prove that if f d(A) = n then pd(A) ≤ n.
Because R is noetherian and A is f.g. it is noetherian R-module and there is a resolution

0 −→ M −→ Pn−1 −→ · · · −→ P1 −→ P0 −→ A −→ 0

where Pi are finitely generated free R-modules and M is finitely presented. Since f d(A) = n
by lemma 3.7(4), M is flat R-module. By lemma 3.10 M is projective and we are done.

§4. Rings of Small Dimension

Now we give characterization of some rings of small dimension. Firstly rings of global
dimension are exactly semi-simple rings:

Theorem 4.1. The following are equivalent for every ring R, where by "R module" we mean
either left R-module or right R-module.
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1. R is semi-simple.

2. R has (left and/or right) global dimension 0.

3. Every R-module is projective.

4. Every R-module is injective.

5. R is noetherian, and every R-module is flat.

6. R is noetherian and has Tor-dimension 0.

Proof. ((1) ⇐⇒ (3) ⇐⇒ (4)) This was proven in assignment. ((2) ⇐⇒ (3)) and
((5) ⇐⇒ (6)) follows from definition. (3) implies that every R-module is flat and (1)
implies that R is noetherian since R = ∑n

i=1 Ii is finite sum of simples. ((5) =⇒ (1)) For
I ∈ Idl/r(R), R/I is finitely presented and hence projective by lemma 3.10. This implies
R −→ R/I splits giving I as direct summand of R.

Definition 4.2. A ring R is called von Newmann Regular if for every a ∈ R there is an x ∈ R
such that axa = a.

Now we see that rings of Tor-dimension 0 are exactly von Neumann regular rings. But first
we study their structure.

Proposition 4.3. If R is von Neumann regular and I is a finitely generated right ideal of R,
then there is an idempotent e (an element with e2 = e) such that I = eR. In particular, I is a
projective R-module, because R ∼= I ⊕ (1 − e)R.

Proof. Suppose first that I = aR and that axa = a. It follows that e = ax is idempotent
and that I = eR. By induction on the number of generators of I, we may suppose that
I = aR + bR with a ∈ I idempotent. Since bR = abR + (1 − a)bR, we have I = aR + cR for
c = (1 − a)b. If cyc = c, then f = cy is idempotent and a f = a(1 − a)by = 0. As f a may not
vanish, we consider e = f (1 − a). Then e ∈ I, ae = 0 = ea, and e is idempotent:

e2 = f (1 − a) f (1 − a) = f ( f − a f )(1 − a) = f 2(1 − a) = f (1 − a) = e.

Moreover, eR = cR because c = f c = f f c = f (1 − a) f c = e f c. Finally, we claim that I
equals J = (a + e)R. Since a + e ∈ I, we have J ⊆ I; the reverse inclusion follows from the
observation that a = (a + e)a ∈ J and e = (a+ e) e ∈ J.

Remark 4.4. The converse of proposition 4.3 also holds: If every finitely generated right
ideal I of R is generated by an idempotent (i.e., R ∼= I ⊕ R/I), then R is von Neumann
regular.
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Theorem 4.5. The following are equivalent for every ring R:

1. R is von Neumann regular.

2. R has Tor-dimension 0.

3. Every R-module is flat.

4. R/I is projective for every finitely generated ideal I.

Proof. ((2) ⇐⇒ (3)) by definition. If I is finitely generated ideal of R then R/I is finitely
presented hence by lemma 3.10, R/I flat ⇐⇒ R/I projective ⇐⇒ R ∼= I ⊕ R/I as R-
modules. Thus we have ((3) =⇒ (4) ⇐⇒ (1)). ((4) =⇒ (2)) If I is any ideal of R then
I = lim−→α

Iα where each Iα is finitely generated. Since Tor commutes with direct limits, we
have Tor1(R/I, B) = lim−→α

Tor1(R/Iα, B) = 0 for all modules B (since by assumption R/Iα is
projective hence flat). Hence Tor-dimension of R is 0.
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