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Basic definitions

The group SL2(Z) is called modular group. There are certain types
of its subgroups which are of interest to us.

Principal congruence subgroup of Level N

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(modN)

}
(1)

congruence subgroup of level N

A subgroup Γ of SL2(Z) s.t. Γ(N) ⊂ Γ.They are of finite index.

Examples

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(modN)

}
(2)

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(modN)

}
(3)
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Modular forms

The modular group acts on the upper half plane H.

Let γ ∈ SL2(Z) and k an integer, define weight k operator [γ]k on
functions f : H → C by

(f [γ]k)(τ) = (cτ + d)−k f (γ · τ) (4)

weakly modular function

A meromorphic function f : H → C is weakly modular of weight k w.r.t. Γ
if it is weight k invariant under Γ. i.e. f [γ]k = f for all γ in Γ

Suppose f is holomorphic and weakly modular w.r.t Γ. Since (1, N; 0,
1) ∈ Γ(N) ⊂ Γ, there exists minimum h s.t. (1, h; 0, 1) ∈ Γ so we
have f (τ) = f (τ + h). h is called period of Γ.

The function qh : τ 7→ e
2πiτ
h takes H to D ′ and is also periodic with

period h. Corresponding to f, function g : D ′ → C where

g(q)=f(hlog(qh)/(2πi)) is well defined and f (τ) = g(e
2πiτ
h ).
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Since f was assumed to be holomorphic on H, the composition with g
is holomorphic on punctured disk. So g(qh)=

∑
n∈Z anq

n
h , qh ∈ D ′.

So define f to be holomorphic at infinity if g extends
holomorphically to the puncture point, qh = 0.

Modular form of weight k w.r.t Γ

is a function f : H → C satisfying

1 f is holomorphic

2 f is weakly modular of weight k w.r.t Γ

3 Holomorphy condition: f [α]k holomorphic at ∞ for all α ∈ SL2(Z).

Vector space of modular forms of weight k w.r.t Γ is denoted by Mk(Γ).

A Γ equivanlence class of Q ∪ {∞} is called a cusp of Γ. They are
finite in number.
Above definition of a function being holomorphic at ∞ can be
extended to the function being holomorphic at other cusps.
Condition (3) says that a modular form is also holomorphic at its
cusps. This is very important in the definition to make the space of
modular forms a finite-dimensional space.
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Eisenstein series

Let k >2 be an even integer. Define Eisenstein series of weight k

Gk(τ) =
∑

(c,d)∈Z2−(0,0)

1

(cτ + d)k
=
∑′

(c,d)

1

(cτ + d)k
, τ ∈ H (5)

sum is absolutely and uniformly convergent on compact subsets of H
(so Gk is holomorphic on H and its terms can be rearranged)

Gk is easily seen to weakly modular w.r.t. SL2(Z ) and satisfies
holomorphy condition.

Using Poission summation formula, we can write its Fourier series

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn where σk−1(n) =
∑
m|n

mk−1

(6)
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Cusp forms of weight k w.r.t Γ

A function f ∈Mk(Γ) is cusp form if a0 = 0 in the Fourier expansion of
f [γ]k for all γ ∈ SL2(Z). The subspace of cusp forms is denoted by Sk(Γ).

The discriminant function

Let g2(τ) = 60G4(τ) and g3(τ) = 140G6(τ). The discriminant function
is

∆ : H → C given by ∆(τ) = (g2(τ))3 − 27(g3(τ))2 (7)

Then ∆ is weakly modular of weight 12 and holomorphic on H and
a0 = 0, a1 = (2π)12. So ∆ ∈ S12(SL2(Z).

Fourier coefficients of ∆ have special significance in number theory.

∆(τ) = (2π)12
∞∑
n=1

τ(n)qn, q = e2πiτ (8)

The arithmetical function τ(n) is known as Ramanujan’s tau
function.

Ajay Prajapati Hecke Operators 3 December 2020 6 / 21



Cusp forms of weight k w.r.t Γ

A function f ∈Mk(Γ) is cusp form if a0 = 0 in the Fourier expansion of
f [γ]k for all γ ∈ SL2(Z). The subspace of cusp forms is denoted by Sk(Γ).

The discriminant function

Let g2(τ) = 60G4(τ) and g3(τ) = 140G6(τ). The discriminant function
is

∆ : H → C given by ∆(τ) = (g2(τ))3 − 27(g3(τ))2 (7)

Then ∆ is weakly modular of weight 12 and holomorphic on H and
a0 = 0, a1 = (2π)12. So ∆ ∈ S12(SL2(Z).

Fourier coefficients of ∆ have special significance in number theory.

∆(τ) = (2π)12
∞∑
n=1

τ(n)qn, q = e2πiτ (8)

The arithmetical function τ(n) is known as Ramanujan’s tau
function.

Ajay Prajapati Hecke Operators 3 December 2020 6 / 21



Cusp forms of weight k w.r.t Γ

A function f ∈Mk(Γ) is cusp form if a0 = 0 in the Fourier expansion of
f [γ]k for all γ ∈ SL2(Z). The subspace of cusp forms is denoted by Sk(Γ).

The discriminant function

Let g2(τ) = 60G4(τ) and g3(τ) = 140G6(τ). The discriminant function
is

∆ : H → C given by ∆(τ) = (g2(τ))3 − 27(g3(τ))2 (7)

Then ∆ is weakly modular of weight 12 and holomorphic on H and
a0 = 0, a1 = (2π)12. So ∆ ∈ S12(SL2(Z).

Fourier coefficients of ∆ have special significance in number theory.

∆(τ) = (2π)12
∞∑
n=1

τ(n)qn, q = e2πiτ (8)

The arithmetical function τ(n) is known as Ramanujan’s tau
function.

Ajay Prajapati Hecke Operators 3 December 2020 6 / 21



Ramanujan conjectures

Ramanujan made three conjectures about them:

1 τ(mn) = τ(m)τ(n) if (m, n)=1

2 τ(pr+1) = τ(p)τ(pr )− p11τ(pr−1) for prime p and r >0

3 |τ(p)| ≤ p11/2 for all primes p

The first two are proved by using theory of Hecke operators. The third one
turned out to be very deep result and very difficult to prove. In 1971,
Deligne showed it as a consequence of third Weil conjecture and in 1974,
he proved it by proving the third Weil conjecture (Riemann Hypothesis for
non-singular projective variety).
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How to find dimensions of Mk(Γ)

Since Mk(Γ) is a finite-dimensional vector space, we want to find its
dimension, basis, etc.

To find its dimension, we first define modular curve of Γ,
Y (Γ) = Γ\H. Then make it a Riemann surface by defining
compatible local charts.

If a point in H has trivial stabilizer subgroup in SL2(Z), then its very
to define local charts. But there are points in H with non-trivial
stabilizer. Special care is required to define local charts around them.
They are called Elliptic points and are finite in number.

It turns out that Y (Γ) have finitely many points missing corresponing
to cusps. After adjoining the cusps, it becomes compact Riemann
surface X (Γ) = Y (Γ) ∪ (Γ \(Q ∪ {∞})) = Γ \H∗ where
H∗ = H ∪Q ∪ {∞}.
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How to find dimensions of Mk(Γ)

1 Then we define differentials of degree k on the compact Riemann
surface X (Γ) by taking a collection of differentials of degree k on
local charts with certain compatibility conditions. It is easy to see
that they form complex vector space and is denoted by Ω⊗k(X (Γ)).

2 It turns out that when we pullback this differential in H, it gives a
well-defined global differential f (τ)(dτ)k of degree k.

3 It is easy to see that this function f is weakly modular of weight 2k
w.r.t. Γ. It turns out that this function is meromorphic at all cusps.
Such type of functions are called Automorphic forms of weight 2k
w.r.t Γ and are denoted by A2k(Γ).

4 It is easy to see that Mk(Γ) and Sk(Γ) are subspaces of Ak(Γ).
5 It turns out that for k even, Ak(Γ) ∼= Ω⊗k/2(X (Γ)) as complex vector

spaces. Now the images of Mk(Γ) and Sk(Γ) under this isomorphism
are subspaces of Ω⊗k/2(X (Γ)). It turns out that these subspaces can
be defined entirely in terms of linear space of canonical divisors on
X (Γ).
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4 It is easy to see that Mk(Γ) and Sk(Γ) are subspaces of Ak(Γ).
5 It turns out that for k even, Ak(Γ) ∼= Ω⊗k/2(X (Γ)) as complex vector

spaces. Now the images of Mk(Γ) and Sk(Γ) under this isomorphism
are subspaces of Ω⊗k/2(X (Γ)). It turns out that these subspaces can
be defined entirely in terms of linear space of canonical divisors on
X (Γ).
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How to find dimensions of Mk(Γ)

Now we use Riemann-Roch theorem to find the dimension of linear
space of these divisors. So we get the dimension formula of Mk(Γ)
and Sk(Γ) in terms of genus of surface X (Γ), number of elliptic and
cusp points.

The genus of surface X (Γ) can be computed using Riemann-Hurwitz
formula in terms of index of Γ in SL2(Z), number of elliptic and cusp
points.

We can compute the dimension of space of modular forms and cusp
forms w.r.t groups Γ0(N), Γ1(N) and Γ(N) in terms of N and k by
computing the number of elliptic and cusp points of these groups.

E.g. For SL2(Z), the full modular group and even k≥ 4,

dim(Mk(SL2(Z))) =

{
b k
12c if k ≡ 2mod(12)

b k
12c+ 1otherwise

(9)

(chapter 2 and 3 of book A first course in Modular forms by Fred
Diamond, Jerry Shurman)
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Hecke operators

It turns out that basis of Mk(Γ)/Sk(Γ) can be constructed explicitly.
They are generalisation of the Eisenstein series that we have seen
above. Therefore this quotient is known as Eisenstein space and is
denoted by Ek(Γ).

Finding the basis of Sk(Γ) is significantly much more difficult task.
That’s where Hecke operators comes into picture.

Diamond operator (Hecke operator of first type)

For d ∈ (Z/NZ)∗ and f ∈Mk(Γ1(N)) define

< d > f = f [α]k for any α =

(
a b
c δ

)
∈ Γ0(N) with δ ≡ d(modN) (10)

This can easily be checked to be well-defined. This basically says that
group Γ0(N) acts on Mk(Γ1(N)) and action is completely determined
by lower-right entry of matrix.
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Definition

Let χ : (Z/NZ)∗ → C be a Dirichlet character. Then χ-eigenspace of
Mk(Γ1(N))

Mk(N, χ) = {f ∈Mk(Γ1(N)) : f [γ]k = χ(dγ)f ∀γ ∈ Γ0} (11)

It can be proved (using basic linear algebra) that

Mk(Γ1(N)) = ⊕χMk(N, χ) (12)

For each χ, define the operator on Mk(Γ1)

πχ =
1

φ(N)

∑
d∈(Z/NZ)∗

χ(d)−1 < d > (13)

Prove π2χ = πχ, πχ(Mk(Γ1)) ⊂Mk(N, χ), πχ = 1 on Mk(N, χ),∑
χ πχ = 1 and πχπχ′ = 0.

Clearly, Mk(N, χ) is χ-eigenspace of the diamond operators.

Mk(N, χ) = {f ∈Mk(Γ1(N)) :< d > f = χ(d)f ∀d ∈ (Z/NZ)∗}
(14)
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Double coset operators

To define Hecke operators of second type, we need to look at more
general type of operators called double coset operators. The
diamond operators are also special case of these operators but it can
be defined without them.

Clearly, Γ1, Γ2 ≤ GL2(Q)+. For each α ∈ GL2(Q)+, the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2} (15)

is double coset in GL2(Q)+. The group Γ1 acts on Γ1αΓ2 by left
multiplication partitioning it into orbits Γ1 \Γ1αΓ2. We prove that
orbit space is finite.
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Lemma 1

Let Γ be congruence subgroup and α ∈ GL2(R)+. Then α−1Γα ∩ SL2(Z)
is again a congruence subgroup of SL2(Z).

Lemma 2

Let Γ1, Γ2 and α be as above. Let Γ3 = α−1Γ1α ∩ Γ2. Then left
multiplication by α map

Γ2 → Γ1αΓ2 given by γ2 7→ αγ2 (16)

induces a natural bijection between coset space Γ3 \Γ2 and orbit space Γ1

\Γ1αΓ2.
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Any two congruence subgroups G1 and G2 of SL2(Z) are
commensurable meaning that the indices [G1 : G1 ∩ G2] and
[G2 : G1 ∩ G2] are finite. So by using lemma 1 and lemma 2 we get
that orbit space Γ1 \Γ1αΓ2 is finite.

Extend the weight k operator to GL2(R)+: For γ = (a, b; c , d)

f [γ]k = (ad − bc)k−1(cτ + d)−k f (γ(τ)) (17)

It can be checked that [γ1γ2]k = [γ1]k [γ2]k as operators.

Definition

Let Γ1, Γ2 and α be as above. The weight-k Γ1αΓ2 operator on
f ∈Mk(Γ1) defined by

f [Γ1αΓ2]k =
∑
j

f [βj ]k (18)

where {βj} are orbit representatives, i.e., Γ1αΓ2 = ∪jΓ1βj
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The double coset operator is well defined

If {βj} and {β′j} are two representatives then there are {γ1,j} in Γ1 s.t.
β′j = γ1,jβj .

Every γ ∈ GL+2 (Q) satisfies γ = αγ′ where α ∈ SL2(Z) and
γ′ = r(a, b; 0, d) with r ∈ Q+ and a, b, d relatively prime.

If f ∈Mk(Γ) then f [α]k has Fourier expansion. We can use above to
show that f [γ]k also has Fourier expansion and if f [α] has constant
term zero then so does f [γ]k .

The double coset operator

takes modular forms w.r.t Γ1 to modular forms w.r.t Γ2.

takes cusp forms w.r.t Γ1 to cusp forms w.r.t Γ2.
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Hecke operators of second type

To define diamond operators as double coset operators, take any
α ∈ Γ0(N) and set Γ1 = Γ2 = Γ1(N). Then < dα >= [Γ1αΓ2]k .

For second type of Hecke operators, take again Γ1 = Γ2 = Γ1(N) but

α =

(
1 0
0 p

)
, p prime. This operator is denoted by Tp. Thus,

Tp :Mk(Γ1(N))→Mk(Γ1(N)) given by Tpf = f [Γ1(N)

(
1 0
0 p

)
Γ1(N)]k

(19)

By definition, any double coset operator is specified by orbit
representatives of Γ1 \Γ1αΓ2 which are coset representatives for Γ2

\Γ3 left multiplied by α (lemma 2). So if we compute the coset
representatives of Γ2 \Γ3, we get exact representation of Tp.
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Proposition

Let N ∈ Z+, let Γ1, Γ2 = Γ1(N) and let α =

(
1 0
0 p

)
where p is prime.

The operator Tp = [Γ1αΓ2]k on Mk(Γ1(N)) is given by

Tpf =


∑p−1

j=0 = f [

(
1 j

0 p

)
]k p|N

∑p−1
j=0 = f [

(
1 j

0 p

)
]k + f [

(
m n

N p

)(
p 0

0 1

)
]k p-N, mp-nN=1

(20)

Proposition

Let d and e be elements of (Z/NZ)∗ and let p, q be primes. Then

<d>Tp = Tp<d>

<e><d>=<d><e>

TpTq = TqTp
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Extension of Hecke operators

We can extend both types of operators to all positive integers n.

Extension of diamond operators

This is extended just like a Dirichlet character mod N is extended to all
integers: If (n, N)=1 then < n >=< n(modN) > and < n >= 0 otherwise

Note that Tp and Tq commutes for different primes p and q.

Extension of second type of Hecke operators

Set T1 = 1. Tp is already defined for primes p. For primes powers, define
inductively

Tpr = TpTpr−1 − pk−1 < p > Tpr−2 , r ≥ 2 (21)

Now, Tn is easily defined using unique factorization of integers.
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What next

An inner product on Sk(Γ) called Petterson inner product.

W.r.t above inner product, both types of Hecke operators {<n >, Tn

: (n, N) = 1} become self-adjoint.

Theorem

The space Sk(Γ1(N)) has an orthogonal basis of simultaneous eigenforms
for the Hecke operators {<n >, Tn : (n, N) = 1}

Proposition

Let f ∈Mk(N, χ). Then f is a normalized eigenform if and only if its
Fourier coefficients satisfy following

1 a1(f ) = 1

2 apr+1(f ) = ap(f )apr (f )− χ(p)pk−1apr−1(f ) for prime p and r >0

3 am(f )an(f ) = amn(f ) when (m, n)=1
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Ramanujan Conjecture

1 τ(mn) = τ(m)τ(n) if (m, n)=1

2 τ(pr+1) = τ(p)τ(pr )− p11τ(pr−1) for prime p and r >0

3 |τ(p)| ≤ p11/2 for all primes p

Using above proposition we can prove Ramanujan first two conjectures
about τ function.
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