The possibl images

l-adic representations and congruences for congruences of modular forms

Ajay Prajapati

Indian Institute of Science, Bangalore

December 12, 2023

・ 何 ト ・ ヨ ト ・ ヨ ト ・

Overview

Introduction

The possibl images

1 Introduction

2 The possible images

2

イロン イ理 とく ヨン イ ヨン

Overview

Introduction

The possible images

1 Introduction

2 The possible images

2

イロン イ理 とく ヨン イ ヨン

Introduction

The possibl images

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$

3

イロト イヨト イヨト イヨト

Introduction

The possible images

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$

and the associated Dirichlet series has the Euler product expansion

$$\sum_{n=1}^{\infty} \tau(n) n^{-s} = \prod_{n=1}^{\infty} \frac{1}{(1 - \tau(p)p^{-s} + p^{11-2s})}$$

э

イロト イヨト イヨト イヨト

Introduction

The possible images

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$

and the associated Dirichlet series has the Euler product expansion

$$\sum_{n=1}^{\infty} \tau(n) n^{-s} = \prod_{n=1}^{\infty} \frac{1}{(1 - \tau(p)p^{-s} + p^{11-2s})}$$

Ramanujan was the first to observe that, modulo certain powers of certain small primes, there are congruences which connect $\tau(n)$ with some of the $\sigma_{\nu}(n)$.

イロト 不得 トイヨト イヨト

Introduction

The possible images

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$

and the associated Dirichlet series has the Euler product expansion

$$\sum_{n=1}^{\infty} \tau(n) n^{-s} = \prod_{n=1}^{\infty} \frac{1}{(1 - \tau(p)p^{-s} + p^{11-2s})}$$

Ramanujan was the first to observe that, modulo certain powers of certain small primes, there are congruences which connect $\tau(n)$ with some of the $\sigma_{\nu}(n)$.

 $\tau(n) \equiv \sigma_{11}(n) \pmod{691}$

イロト 不得 トイラト イラト 一日

Congruences

Introduction

The possible images

$$\begin{aligned} \tau(n) &\equiv \sigma_{11}(n) \pmod{2^{11}} & \text{if} \quad n \equiv 1 \pmod{8} \\ \tau(n) &\equiv 1217\sigma_{11}(n) \pmod{2^{13}} & \text{if} \quad n \equiv 3 \pmod{8} \\ \tau(n) &\equiv 1537\sigma_{11}(n) \pmod{2^{12}} & \text{if} \quad n \equiv 5 \pmod{8} \\ \tau(n) &\equiv 705\sigma_{11}(n) \pmod{2^{14}} & \text{if} \quad n \equiv 7 \pmod{8} \end{aligned}$$

Congruences

Introduction

The possible images

$$\begin{aligned} \tau(n) &\equiv \sigma_{11}(n) \pmod{2^{11}} & \text{if} \quad n \equiv 1 \pmod{8} \\ \tau(n) &\equiv 1217\sigma_{11}(n) \pmod{2^{13}} & \text{if} \quad n \equiv 3 \pmod{8} \\ \tau(n) &\equiv 1537\sigma_{11}(n) \pmod{2^{12}} & \text{if} \quad n \equiv 5 \pmod{8} \\ \tau(n) &\equiv 705\sigma_{11}(n) \pmod{2^{14}} & \text{if} \quad n \equiv 7 \pmod{8} \end{aligned}$$

$$\begin{aligned} \tau(n) &\equiv n^{-610} \sigma_{1231}(n) \pmod{3^6} & \text{if} \quad n \equiv 1 \pmod{3} \\ \tau(n) &\equiv n^{-610} \sigma_{1231}(n) \pmod{3^7} & \text{if} \quad n \equiv 2 \pmod{3} \end{aligned}$$

イロト イ部ト イヨト イヨト 二日

Congruences

Introduction

The possible images

$$\begin{aligned} \tau(n) &\equiv \sigma_{11}(n) \pmod{2^{11}} & \text{if} \quad n \equiv 1 \pmod{8} \\ \tau(n) &\equiv 1217\sigma_{11}(n) \pmod{2^{13}} & \text{if} \quad n \equiv 3 \pmod{8} \\ \tau(n) &\equiv 1537\sigma_{11}(n) \pmod{2^{12}} & \text{if} \quad n \equiv 5 \pmod{8} \\ \tau(n) &\equiv 705\sigma_{11}(n) \pmod{2^{14}} & \text{if} \quad n \equiv 7 \pmod{8} \end{aligned}$$

$$\begin{aligned} \tau(n) &\equiv n^{-610} \sigma_{1231}(n) \pmod{3^6} & \text{if} \quad n \equiv 1 \pmod{3} \\ \tau(n) &\equiv n^{-610} \sigma_{1231}(n) \pmod{3^7} & \text{if} \quad n \equiv 2 \pmod{3} \end{aligned}$$

$$\tau(n) \equiv n^{-30} \sigma_{71}(n) \pmod{5^3}$$
 if $(n,5) = 1$

イロト イ部ト イヨト イヨト 二日

The possible images

 $\begin{aligned} \tau(n) &\equiv n\sigma_9(n) \pmod{7} \quad \text{if} \quad n \equiv 0, 1, 2, \text{ or } 4 \pmod{7} \\ \tau(n) &\equiv n\sigma_9(n) \pmod{7^2} \quad \text{if} \quad n \equiv 3, 5, \text{ or } 7 \pmod{7} \end{aligned}$

The possible images

 $\begin{aligned} \tau(n) &\equiv n\sigma_9(n) \pmod{7} \quad \text{if} \quad n \equiv 0, 1, 2, \text{ or } 4 \pmod{7} \\ \tau(n) &\equiv n\sigma_9(n) \pmod{7^2} \quad \text{if} \quad n \equiv 3, 5, \text{ or } 7 \pmod{7} \end{aligned}$

$$\begin{aligned} \tau(n) &\equiv 0 \pmod{23} & \text{if} \quad \left(\frac{p}{23}\right) = 1 \\ \tau(n) &\equiv 2 \pmod{23} & \text{if} \quad p = u^2 + 23v^2 \text{ for integers } u \neq 0, v \\ \tau(n) &\equiv -1 \pmod{23} & \text{for other } p \neq 23 \end{aligned}$$

The possible images

 $\begin{aligned} \tau(n) &\equiv n\sigma_9(n) \pmod{7} \quad \text{if} \quad n \equiv 0, 1, 2, \text{ or } 4 \pmod{7} \\ \tau(n) &\equiv n\sigma_9(n) \pmod{7^2} \quad \text{if} \quad n \equiv 3, 5, \text{ or } 7 \pmod{7} \end{aligned}$

$$\begin{split} \tau(n) &\equiv 0 \pmod{23} \quad \text{if} \quad \left(\frac{p}{23}\right) = 1 \\ \tau(n) &\equiv 2 \pmod{23} \quad \text{if} \quad p = u^2 + 23v^2 \text{ for integers } u \neq 0, v \\ \tau(n) &\equiv -1 \pmod{23} \quad \text{for other } p \neq 23 \end{split}$$

 $\tau(n) \equiv \sigma_{11}(n) \pmod{691}$

э

(日)

Two natural questions

Introduction

The possible images

- 1 Are there congruences for $\tau(n)$ modulo primes other than 2, 3, 5, 7, 23, and 691?
- Are the congruences previously mentioned best possible or could one prove congruences modulo even higher powers?

A B M A B M

Two natural questions

Introduction

The possible images

- 1 Are there congruences for $\tau(n)$ modulo primes other than 2, 3, 5, 7, 23, and 691?
- 2 Are the congruences previously mentioned best possible or could one prove congruences modulo even higher powers?
- 3 Are there similar congruences for fourier coefficients of other cusp forms?

<日

<</p>

Introduction

The possible images

Let $f = \sum a_n q^n \in \mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}))$, and suppose

э

イロト イヨト イヨト イヨト

Introduction

The possible images

Let $f = \sum a_n q^n \in \mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}))$, and suppose 1 $a_1 = 1$,

Introduction

The possible images

Let $f = \sum a_n q^n \in \mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}))$, and suppose 1 $a_1 = 1$, 2 every $a_n \in \mathbb{Z}$,

3

イロト イヨト イヨト イヨト

Introduction

The possible images

Let $f = \Sigma a_n q^n \in \mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}))$, and suppose

1 $a_1 = 1$,

2 every $a_n \in \mathbb{Z}$,

3 associated Dirichlet series has the Euler product expansion

$$\sum_{n=1}^{\infty} a_n n^{-s} = \prod_{n=1}^{\infty} \frac{1}{(1 - a_p p^{-s} + p^{11-2s})}$$

3

イロト 不得 トイヨト イヨト

Introduction

The possible images

Let $f = \Sigma a_n q^n \in \mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}))$, and suppose

1 $a_1 = 1$,

2 every $a_n \in \mathbb{Z}$,

3 associated Dirichlet series has the Euler product expansion

$$\sum_{n=1}^{\infty} a_n n^{-s} = \prod_{n=1}^{\infty} \frac{1}{(1 - a_p p^{-s} + p^{11-2s})}$$

Then there is a continuous homomorphism

 $\rho_{\ell} : \operatorname{Gal}(K_{\ell}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_{\ell}),$

depending on f,

Introduction

The possible images Let $f = \Sigma a_n q^n \in \mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}))$, and suppose

1 $a_1 = 1$,

2 every $a_n \in \mathbb{Z}$,

3 associated Dirichlet series has the Euler product expansion

$$\sum_{n=1}^{\infty} a_n n^{-s} = \prod_{n=1}^{\infty} \frac{1}{(1 - a_p p^{-s} + p^{11-2s})}$$

Then there is a continuous homomorphism

 $\rho_{\ell} : \operatorname{Gal}(K_{\ell}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_{\ell}),$

depending on f, such that $\rho_{\ell}(\operatorname{Frob}_p)$ has char. polynomial

$$X^2 - a_p X + p^{k-1}$$

for each $p \neq \ell$.

イロン 不通 とうほう 不良 とうほ

The possible images

э

(日)

The possible images

- Conditions on f are satisfied by unique cusp forms of weights 12, 16, 18, 20, 22, 26.
- 2 This theorem implies

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

э

(日)

The possible images

- Conditions on f are satisfied by unique cusp forms of weights 12, 16, 18, 20, 22, 26.
- 2 This theorem implies

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

Intuition: If the image of ρ_{ℓ} is small enough, a knowledge of the determinant of an element of the image will imply some ℓ -adic information about the trace of that element;

イロト 不得 トイヨト イヨト

The possible images

- Conditions on f are satisfied by unique cusp forms of weights 12, 16, 18, 20, 22, 26.
- 2 This theorem implies

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

Intuition: If the image of ρ_{ℓ} is small enough, a knowledge of the determinant of an element of the image will imply some ℓ -adic information about the trace of that element; and so in particular a (approximate ℓ -adic) knowledge of p will imply some ℓ -adic information about a_p .

イロト イヨト イヨト イヨト

The possible images

- Conditions on f are satisfied by unique cusp forms of weights 12, 16, 18, 20, 22, 26.
- 2 This theorem implies

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

Intuition: If the image of ρ_{ℓ} is small enough, a knowledge of the determinant of an element of the image will imply some ℓ -adic information about the trace of that element; and so in particular a (approximate ℓ -adic) knowledge of p will imply some ℓ -adic information about a_p .

3 Converse also holds.

The possible images

Lemma

Suppose that $\ell > 3$ and that $G \leq \operatorname{GL}_2(\mathbb{Z}_\ell)$ be a closed subgroup.

3

イロト イヨト イヨト イヨト

The possible images

Lemma

Suppose that $\ell > 3$ and that $G \leq GL_2(\mathbb{Z}_\ell)$ be a closed subgroup. If the image of G under the map

 $(\mathrm{mod}\ \ell): \mathrm{GL}_2(\mathbb{Z}_\ell) \longrightarrow \mathrm{GL}_2(\mathbb{F}_\ell)$

contains $SL_2(\mathbb{F}_{\ell})$

The possible images

Lemma

Suppose that $\ell > 3$ and that $G \leq GL_2(\mathbb{Z}_\ell)$ be a closed subgroup. If the image of G under the map

```
(\mathrm{mod}\ \ell): \mathrm{GL}_2(\mathbb{Z}_\ell) \longrightarrow \mathrm{GL}_2(\mathbb{F}_\ell)
```

contains $\operatorname{SL}_2(\mathbb{F}_\ell)$ then G contains $\operatorname{SL}_2(\mathbb{Z}_\ell)$.

Proof (outline)

1 Let $G_n = \text{Image}(G \longrightarrow \text{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z})).$

The possible images

Lemma

Suppose that $\ell > 3$ and that $G \leq GL_2(\mathbb{Z}_\ell)$ be a closed subgroup. If the image of G under the map

```
(\mathrm{mod}\ \ell): \mathrm{GL}_2(\mathbb{Z}_\ell) \longrightarrow \mathrm{GL}_2(\mathbb{F}_\ell)
```

contains $\operatorname{SL}_2(\mathbb{F}_\ell)$ then G contains $\operatorname{SL}_2(\mathbb{Z}_\ell)$.

Proof (outline)

1 Let $G_n = \text{Image}(G \longrightarrow \text{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z}))$. Enough to prove that $G_n \supset \text{SL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$ for each n > 0.

The possible images

Lemma

Suppose that $\ell > 3$ and that $G \leq GL_2(\mathbb{Z}_\ell)$ be a closed subgroup. If the image of G under the map

```
(\mathrm{mod}\ \ell): \mathrm{GL}_2(\mathbb{Z}_\ell) \longrightarrow \mathrm{GL}_2(\mathbb{F}_\ell)
```

contains $\operatorname{SL}_2(\mathbb{F}_\ell)$ then G contains $\operatorname{SL}_2(\mathbb{Z}_\ell)$.

Proof (outline)

- Let $G_n = \text{Image}(G \longrightarrow \text{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z}))$. Enough to prove that $G_n \supset \text{SL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$ for each n > 0.
- **2** Let $H_n = \ker(\operatorname{SL}_2(\mathbb{Z}/\ell^n\mathbb{Z}) \longrightarrow \operatorname{SL}_2(\mathbb{Z}/\ell^{n-1}\mathbb{Z})).$

The possible images

Lemma

Suppose that $\ell > 3$ and that $G \leq GL_2(\mathbb{Z}_\ell)$ be a closed subgroup. If the image of G under the map

```
(\mathrm{mod}\ \ell): \mathrm{GL}_2(\mathbb{Z}_\ell) \longrightarrow \mathrm{GL}_2(\mathbb{F}_\ell)
```

contains $\operatorname{SL}_2(\mathbb{F}_\ell)$ then G contains $\operatorname{SL}_2(\mathbb{Z}_\ell)$.

Proof (outline)

- Let $G_n = \text{Image}(G \longrightarrow \text{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z}))$. Enough to prove that $G_n \supset \text{SL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$ for each n > 0.
- **2** Let $H_n = \ker(\operatorname{SL}_2(\mathbb{Z}/\ell^n\mathbb{Z}) \longrightarrow \operatorname{SL}_2(\mathbb{Z}/\ell^{n-1}\mathbb{Z}))$. It is sufficient to prove that $H_n \subset G_n$ for each n > 1.

The possible images

Lemma

Suppose that $\ell > 3$ and that $G \leq GL_2(\mathbb{Z}_\ell)$ be a closed subgroup. If the image of G under the map

```
(\mathrm{mod}\ \ell): \mathrm{GL}_2(\mathbb{Z}_\ell) \longrightarrow \mathrm{GL}_2(\mathbb{F}_\ell)
```

contains $\operatorname{SL}_2(\mathbb{F}_\ell)$ then G contains $\operatorname{SL}_2(\mathbb{Z}_\ell)$.

Proof (outline)

- Let $G_n = \text{Image}(G \longrightarrow \text{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z}))$. Enough to prove that $G_n \supset \text{SL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$ for each n > 0.
- **2** Let $H_n = \ker(\operatorname{SL}_2(\mathbb{Z}/\ell^n\mathbb{Z}) \longrightarrow \operatorname{SL}_2(\mathbb{Z}/\ell^{n-1}\mathbb{Z}))$. It is sufficient to prove that $H_n \subset G_n$ for each n > 1.

3 H_2 is generated by three matrices $I + \ell u$ where $u = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$.

Proof Outline

Introduction

The possible images

In each case, $I + u \in SL_2(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I + u \pmod{\ell}$.

3

イロト イヨト イヨト イヨト

Proof Outline

Introduction

The possible images

1 In each case, $I + u \in SL_2(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I + u \pmod{\ell}$. i.e. $\sigma = I + u + \ell v$ where $v \in M_2(\mathbb{Z}_{\ell})$.

3

イロン イ理 とく ヨン イ ヨン

Introduction

The possible images

1 In each case, $I + u \in SL_2(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I + u \pmod{\ell}$. i.e. $\sigma = I + u + \ell v$ where $v \in M_2(\mathbb{Z}_\ell)$. Now

 $\sigma^{\ell} = I + \ell (u + \ell v) + \ldots + (u + \ell v)^{\ell} \equiv I + \ell u \pmod{\ell^2}.$ because $u^2 = 0$ in each case.

3

イロト 不得 トイヨト イヨト

Introduction

The possible images

1 In each case, $I + u \in SL_2(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I + u \pmod{\ell}$. i.e. $\sigma = I + u + \ell v$ where $v \in M_2(\mathbb{Z}_\ell)$. Now

 $\sigma^{\ell} = I + \ell(u + \ell v) + \ldots + (u + \ell v)^{\ell} \equiv I + \ell u \pmod{\ell^2}.$ because $u^2 = 0$ in each case. 2 So $G_2 \supset H_2$. Now we assume that $G_{n-1} \supset H_{n-1}$.

3

イロト 不得 トイヨト イヨト

Introduction

The possible images

1 In each case, $I + u \in SL_2(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I + u \pmod{\ell}$. i.e. $\sigma = I + u + \ell v$ where $v \in M_2(\mathbb{Z}_\ell)$. Now

 $\sigma^{\ell} = I + \ell(u + \ell v) + \ldots + (u + \ell v)^{\ell} \equiv I + \ell u \pmod{\ell^2}.$

because $u^2 = 0$ in each case.

2 So $G_2 \supset H_2$. Now we assume that $G_{n-1} \supset H_{n-1}$. Let $I + \ell^{n-1}v$ (with $v \in M_2(\mathbb{Z}_{\ell})$) be representative of an element of G_n .

3
$$I + \ell^{n-2} v \pmod{\ell^{n-1}}$$
 is in H_{n-1} .

Introduction

The possible images

1 In each case, $I + u \in SL_2(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I + u \pmod{\ell}$. i.e. $\sigma = I + u + \ell v$ where $v \in M_2(\mathbb{Z}_\ell)$. Now

 $\sigma^{\ell} = I + \ell(u + \ell v) + \ldots + (u + \ell v)^{\ell} \equiv I + \ell u \pmod{\ell^2}.$

because $u^2 = 0$ in each case.

- **2** So $G_2 \supset H_2$. Now we assume that $G_{n-1} \supset H_{n-1}$. Let $I + \ell^{n-1}v$ (with $v \in M_2(\mathbb{Z}_{\ell})$) be representative of an element of G_n .
- 3 $I + \ell^{n-2}v \pmod{\ell^{n-1}}$ is in H_{n-1} . By induction hypothesis, $\exists \sigma \in G$ such that

$$\sigma \equiv I + \ell^{n-2} v \pmod{\ell^{n-1}}.$$

Introduction

The possible images

1 In each case, $I + u \in SL_2(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I + u \pmod{\ell}$. i.e. $\sigma = I + u + \ell v$ where $v \in M_2(\mathbb{Z}_\ell)$. Now

 $\sigma^{\ell} = I + \ell(u + \ell v) + \ldots + (u + \ell v)^{\ell} \equiv I + \ell u \pmod{\ell^2}.$

because $u^2 = 0$ in each case.

- **2** So $G_2 \supset H_2$. Now we assume that $G_{n-1} \supset H_{n-1}$. Let $I + \ell^{n-1}v$ (with $v \in M_2(\mathbb{Z}_{\ell})$) be representative of an element of G_n .
- 3 $I + \ell^{n-2}v \pmod{\ell^{n-1}}$ is in H_{n-1} . By induction hypothesis, $\exists \sigma \in G$ such that

$$\sigma \equiv I + \ell^{n-2} v \pmod{\ell^{n-1}}.$$

Then

$$\sigma^\ell \equiv I + \ell^{n-1} v \pmod{\ell^n}.$$

Introduction

The possible images

1 In each case, $I + u \in SL_2(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I + u \pmod{\ell}$. i.e. $\sigma = I + u + \ell v$ where $v \in M_2(\mathbb{Z}_\ell)$. Now

 $\sigma^{\ell} = I + \ell(u + \ell v) + \ldots + (u + \ell v)^{\ell} \equiv I + \ell u \pmod{\ell^2}.$

because $u^2 = 0$ in each case.

- **2** So $G_2 \supset H_2$. Now we assume that $G_{n-1} \supset H_{n-1}$. Let $I + \ell^{n-1}v$ (with $v \in M_2(\mathbb{Z}_{\ell})$) be representative of an element of G_n .
- 3 $I + \ell^{n-2}v \pmod{\ell^{n-1}}$ is in H_{n-1} . By induction hypothesis, $\exists \sigma \in G$ such that

$$\sigma \equiv I + \ell^{n-2} v \pmod{\ell^{n-1}}.$$

Then

$$\sigma^\ell \equiv I + \ell^{n-1} v \pmod{\ell^n}.$$

So $G_n \supset H_n$.

(日)

The possible images

There are analogous results for $\ell = 2$ and $\ell = 3$, in which \mathbb{F}_{ℓ} is replaced by $\mathbb{Z}/8\mathbb{Z}$ or $\mathbb{Z}/9\mathbb{Z}$ respectively.

э

The possible images

There are analogous results for $\ell = 2$ and $\ell = 3$, in which \mathbb{F}_{ℓ} is replaced by $\mathbb{Z}/8\mathbb{Z}$ or $\mathbb{Z}/9\mathbb{Z}$ respectively.

Definition

 ℓ is called an exceptional prime for the cusp form f if the image of ρ_{ℓ} does not contain $\mathrm{SL}_2(\mathbb{Z}_{\ell})$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

The possible images

There are analogous results for $\ell = 2$ and $\ell = 3$, in which \mathbb{F}_{ℓ} is replaced by $\mathbb{Z}/8\mathbb{Z}$ or $\mathbb{Z}/9\mathbb{Z}$ respectively.

Definition

 ℓ is called an exceptional prime for the cusp form f if the image of ρ_{ℓ} does not contain $\mathrm{SL}_2(\mathbb{Z}_{\ell})$.

Corollary

Suppose that $\ell > 3$; then ℓ is exceptional for $f \iff$ the image of $\tilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_2(\mathbb{F}_{\ell})$.

< □ > < □ > < □ > < □ > < □ > < □ >

The possible images

There are analogous results for $\ell = 2$ and $\ell = 3$, in which \mathbb{F}_{ℓ} is replaced by $\mathbb{Z}/8\mathbb{Z}$ or $\mathbb{Z}/9\mathbb{Z}$ respectively.

Definition

 ℓ is called an exceptional prime for the cusp form f if the image of ρ_{ℓ} does not contain $\mathrm{SL}_2(\mathbb{Z}_{\ell})$.

Corollary

Suppose that $\ell > 3$; then ℓ is exceptional for $f \iff$ the image of $\widetilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_2(\mathbb{F}_\ell)$. For $\ell = 2$ or 3 this is still a sufficient condition for ℓ to be exceptional for f.

< □ > < □ > < □ > < □ > < □ > < □ >

Overview

Introduction

The possible images

1 Introduction

2 The possible images

3

イロン イ理 とく ヨン イ ヨン

Introduction

The possible images

$\operatorname{GL}_2(\mathbb{F}_\ell)$ acts on $V \cong \mathbb{F}_\ell^2$.

э

イロン イ理 とく ヨン イ ヨン

Introduction

The possible images

 $\operatorname{GL}_2(\mathbb{F}_\ell)$ acts on $V \cong \mathbb{F}_\ell^2$.

Definition

A Borel subgroup of $\operatorname{GL}_2(\mathbb{F}_\ell)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

A (10) × (10)

Introduction

The possible images

 $\operatorname{GL}_2(\mathbb{F}_\ell)$ acts on $V \cong \mathbb{F}_\ell^2$.

Definition

A Borel subgroup of $\mathrm{GL}_2(\mathbb{F}_\ell)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative subgroup.

Introduction

The possible images

 $\operatorname{GL}_2(\mathbb{F}_\ell)$ acts on $V \cong \mathbb{F}_\ell^2$.

Definition

A Borel subgroup of $\mathrm{GL}_2(\mathbb{F}_\ell)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative subgroup. For $\ell > 2$, a split Cartan subgroup is any subgroup conjugate to the group of non-singular diagonal matrices.

イロト 不得 トイヨト イヨト

Introduction

The possible images

 $\operatorname{GL}_2(\mathbb{F}_\ell)$ acts on $V \cong \mathbb{F}_\ell^2$.

Definition

A Borel subgroup of $\mathrm{GL}_2(\mathbb{F}_\ell)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative subgroup. For $\ell > 2$, a split Cartan subgroup is any subgroup conjugate to the group of non-singular diagonal matrices.

It is isomorphic to $(\mathbb{Z}/(\ell-1)\mathbb{Z})^2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

The possible images

 $\operatorname{GL}_2(\mathbb{F}_\ell)$ acts on $V \cong \mathbb{F}_\ell^2$.

Definition

A Borel subgroup of ${\rm GL}_2(\mathbb{F}_\ell)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative subgroup. For $\ell > 2$, a split Cartan subgroup is any subgroup conjugate to the group of non-singular diagonal matrices.

It is isomorphic to $(\mathbb{Z}/(\ell-1)\mathbb{Z})^2$.

Similarly, non-split Cartan subgroup is defined. It is isomorphic to $\mathbb{F}_{\ell^2}^\times.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The possible images

Theorem

Let G be a subgroup of $\operatorname{GL}_2(\mathbb{F}_\ell)$.

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

The possible images

Theorem

Let G be a subgroup of $\operatorname{GL}_2(\mathbb{F}_{\ell})$. If ℓ divides the order of G, then either

э

イロト イヨト イヨト イヨト

The possible images

Theorem

Let G be a subgroup of $\operatorname{GL}_2(\mathbb{F}_\ell)$.

If ℓ divides the order of G, then either

1 G is contained in a Borel subgroup of $GL_2(\mathbb{F}_{\ell})$, or

э

イロト イボト イヨト イヨト

The possible images

Theorem

Let G be a subgroup of $\operatorname{GL}_2(\mathbb{F}_{\ell})$.

If ℓ divides the order of G, then either

1 G is contained in a Borel subgroup of $\operatorname{GL}_2(\mathbb{F}_{\ell})$, or

2 $\operatorname{GL}_2(\mathbb{F}_\ell) \subset G$.

э

イロト イヨト イヨト

The possible images

Theorem

Let G be a subgroup of $\operatorname{GL}_2(\mathbb{F}_{\ell})$.

If ℓ divides the order of G, then either

1 G is contained in a Borel subgroup of $\operatorname{GL}_2(\mathbb{F}_\ell)$, or **2** $\operatorname{GL}_2(\mathbb{F}_\ell) \subset G$.

If $(|G|, \ell) = 1$, let H be the image of G in $PGL_2(\mathbb{F}_{\ell})$; then

э

イロト イヨト イヨト

The possible images

Theorem

Let G be a subgroup of $\operatorname{GL}_2(\mathbb{F}_\ell)$. If ℓ divides the order of G, then either **1** G is contained in a Borel subgroup of $\operatorname{GL}_2(\mathbb{F}_\ell)$, or **2** $\operatorname{GL}_2(\mathbb{F}_\ell) \subset G$. If $(|G|, \ell) = 1$, let H be the image of G in $\operatorname{PGL}_2(\mathbb{F}_\ell)$; then **1** H is cyclic and G is contained in a Cartan subgroup, or

э

イロト イポト イヨト イヨト

The possible images

Theorem

Let G be a subgroup of $\operatorname{GL}_2(\mathbb{F}_{\ell})$. If ℓ divides the order of G, then either **1** G is contained in a Borel subgroup of $GL_2(\mathbb{F}_{\ell})$, or **2** $\operatorname{GL}_2(\mathbb{F}_\ell) \subset G$. If $(|G|, \ell) = 1$, let H be the image of G in $PGL_2(\mathbb{F}_{\ell})$; then **1** H is cyclic and G is contained in a Cartan subgroup, or **2** H is dihedral and G is contained in the normalizer of a Cartan subgroup but not in the Cartan subgroup itself, or

イロト イポト イヨト イヨト

The possible images

Theorem

```
Let G be a subgroup of \operatorname{GL}_2(\mathbb{F}_{\ell}).
If \ell divides the order of G, then either
  1 G is contained in a Borel subgroup of GL_2(\mathbb{F}_{\ell}),
                                                                    or
  2 GL<sub>2</sub>(\mathbb{F}_{\ell}) \subset G.
If (|G|, \ell) = 1, let H be the image of G in PGL_2(\mathbb{F}_{\ell}); then
  1 H is cyclic and G is contained in a Cartan subgroup,
                                                                          or
  2 H is dihedral and G is contained in the normalizer of a
     Cartan subgroup but not in the Cartan subgroup itself,
     or
  3 H is isomorphic to A_4, S_4, or A_5.
In case (ii) \ell must be odd;
```

э

イロト イボト イヨト イヨト

The possible images

Theorem

イロト イボト イヨト イヨト

The possible images

Corollary 1

Let $\rho_\ell: \operatorname{Gal}(K_\ell/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_\ell)$ be any continuous homomorphism such that

$$\det\circ\ \rho_\ell=\chi_\ell^{k-1}$$

for some even integer k.

æ

イロト イヨト イヨト イヨト

The possible images

Corollary 1

Let $\rho_\ell : \operatorname{Gal}(K_\ell/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_\ell)$ be any continuous homomorphism such that

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

for some even integer k. Let $G \subset GL_2(\mathbb{F}_{\ell})$ be the image of $\widetilde{\rho_{\ell}}$ and let H be the image of G in $PGL_2(\mathbb{F}_{\ell})$.

The possible images

Corollary 1

Let $\rho_\ell : \operatorname{Gal}(K_\ell/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_\ell)$ be any continuous homomorphism such that

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

for some even integer k. Let $G \subset \operatorname{GL}_2(\mathbb{F}_{\ell})$ be the image of $\widetilde{\rho_{\ell}}$ and let H be the image of G in $\operatorname{PGL}_2(\mathbb{F}_{\ell})$. Suppose that Gdoes not contain $\operatorname{SL}_2(\mathbb{F}_{\ell})$.

イロト 不得 トイヨト イヨト

The possible images

Corollary 1

Let $\rho_\ell : \operatorname{Gal}(K_\ell/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_\ell)$ be any continuous homomorphism such that

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

for some even integer k. Let $G \subset GL_2(\mathbb{F}_{\ell})$ be the image of $\tilde{\rho_{\ell}}$ and let H be the image of G in $PGL_2(\mathbb{F}_{\ell})$. Suppose that Gdoes not contain $SL_2(\mathbb{F}_{\ell})$. Then

1 G is contained in a Borel subgroup of $GL_2(\mathbb{F}_{\ell})$; or

イロト 不得 トイヨト イヨト

The possible images

Corollary 1

Let $\rho_\ell : \operatorname{Gal}(K_\ell/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_\ell)$ be any continuous homomorphism such that

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

for some even integer k. Let $G \subset \operatorname{GL}_2(\mathbb{F}_{\ell})$ be the image of $\widetilde{\rho_{\ell}}$ and let H be the image of G in $\operatorname{PGL}_2(\mathbb{F}_{\ell})$. Suppose that Gdoes not contain $\operatorname{SL}_2(\mathbb{F}_{\ell})$. Then

1 G is contained in a Borel subgroup of $GL_2(\mathbb{F}_{\ell})$; or

2 *G* is contained in the normalizer of a Cartan subgroup, but not in the Cartan subgroup itself; or

(日)

The possible images

Corollary 1

Let $\rho_\ell : \operatorname{Gal}(K_\ell/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Z}_\ell)$ be any continuous homomorphism such that

$$\det \circ \ \rho_{\ell} = \chi_{\ell}^{k-1}$$

for some even integer k. Let $G \subset \operatorname{GL}_2(\mathbb{F}_{\ell})$ be the image of $\widetilde{\rho_{\ell}}$ and let H be the image of G in $\operatorname{PGL}_2(\mathbb{F}_{\ell})$. Suppose that Gdoes not contain $\operatorname{SL}_2(\mathbb{F}_{\ell})$. Then

- **1** G is contained in a Borel subgroup of $GL_2(\mathbb{F}_{\ell})$; or
- 2 G is contained in the normalizer of a Cartan subgroup, but not in the Cartan subgroup itself; or

3 $H \cong S_4$.

Introduction

The possible images

Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.

э

イロト イボト イヨト イヨト

Introduction

The possible images

- Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
- 2 Let C be a non-split Cartan subgroup. So C is cyclic of order (ℓ² − 1).

3

イロト 不得 トイヨト イヨト

Introduction

The possible images

- Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
- **2** Let C be a non-split Cartan subgroup. So C is cyclic of order $(\ell^2 1)$. Now $\tilde{\rho}_{\ell}$ factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$.
- 3 Since $(|Im(\mathbb{Z}_{\ell}^*)|, \ell) = 1$, $|Im(\mathbb{Z}_{\ell}^*)|| | (\ell 1)$.

3

イロト 不得 トイヨト イヨト

Introduction

The possible images

- Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
- 2 Let C be a non-split Cartan subgroup. So C is cyclic of order (ℓ² − 1). Now ρ_ℓ factors through Gal(K^{ab}_ℓ/Q) ≃ Z^{*}_ℓ.
- 3 Since $(|Im(\mathbb{Z}_{\ell}^*)|, \ell) = 1$, $|Im(\mathbb{Z}_{\ell}^*)|| | (\ell 1)$. Thus image lies in a Borel subgroup.
- 4 Now we prove that $H \neq A_4$ or A_5 .

Introduction

The possible images

- Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
- 2 Let C be a non-split Cartan subgroup. So C is cyclic of order (ℓ² − 1). Now ρ_ℓ factors through Gal(K^{ab}_ℓ/Q) ≃ Z^{*}_ℓ.
- 3 Since $(|Im(\mathbb{Z}_{\ell}^*)|, \ell) = 1$, $|Im(\mathbb{Z}_{\ell}^*)|| | (\ell 1)$. Thus image lies in a Borel subgroup.
- 4 Now we prove that $H \neq A_4$ or A_5 . We assume $\ell > 2$. Consider the commutative diagram:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

The possible images

- Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
- 2 Let C be a non-split Cartan subgroup. So C is cyclic of order (ℓ² − 1). Now ρ_ℓ factors through Gal(K^{ab}_ℓ/Q) ≃ Z^{*}_ℓ.
- 3 Since $(|Im(\mathbb{Z}_{\ell}^*)|, \ell) = 1$, $|Im(\mathbb{Z}_{\ell}^*)|| | (\ell 1)$. Thus image lies in a Borel subgroup.
- 4 Now we prove that $H \neq A_4$ or A_5 . We assume $\ell > 2$. Consider the commutative diagram:

$$\operatorname{Gal}(K_{\ell}/\mathbb{Q}) \longrightarrow G \xrightarrow{det} \mathbb{F}_{\ell}^{*}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H \longrightarrow \mathbb{F}_{\ell}^{*}/\mathbb{F}_{\ell}^{*2} \cong \{\pm 1\}$$

Image of G in \mathbb{F}_{ℓ}^* consists of all $(k-1)^{th}$ powers and k is even.

The possible images

Corollary 2

Let $f = \sum a_n q^n \in \mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}), \mathbb{Z})$ be a normalized eigenform and ρ_ℓ be the Galois representation given by Serre-Deligne.

くじゃ ヘリト ヘリト

The possible images

Corollary 2

Let $f = \sum a_n q^n \in \mathcal{S}_k(\mathrm{SL}_2(\mathbb{Z}), \mathbb{Z})$ be a normalized eigenform and ρ_ℓ be the Galois representation given by Serre-Deligne. Suppose that the image of $\widetilde{\rho_\ell}$ does not contain $\mathrm{SL}_2(\mathbb{F}_\ell)$, so that ℓ is an exceptional prime for f.

▲ □ ● ▲ 三 ● ▲ 三 ●

The possible images

Corollary 2

Let $f = \sum a_n q^n \in S_k(\operatorname{SL}_2(\mathbb{Z}), \mathbb{Z})$ be a normalized eigenform and ρ_ℓ be the Galois representation given by Serre-Deligne. Suppose that the image of $\widetilde{\rho_\ell}$ does not contain $\operatorname{SL}_2(\mathbb{F}_\ell)$, so that ℓ is an exceptional prime for f. Then the three cases listed in Corollary 1 imply respectively the

following congruences for the coefficients of f

▲雪 ▶ ▲ ヨ ▶ ▲ ヨ ▶

The possible images

Corollary 2

Let $f = \sum a_n q^n \in S_k(\operatorname{SL}_2(\mathbb{Z}), \mathbb{Z})$ be a normalized eigenform and ρ_ℓ be the Galois representation given by Serre-Deligne. Suppose that the image of $\tilde{\rho_\ell}$ does not contain $\operatorname{SL}_2(\mathbb{F}_\ell)$, so that ℓ is an exceptional prime for f. Then the three cases listed in Corollary 1 imply respectively the following congruences for the coefficients of f

1 There is an integer m such that

$$a_n \equiv n^m \sigma_{k-1-2m}(n) \pmod{\ell}$$

for all n prime to ℓ .

▲白◇ ▼ ▲ 日 ▼ ▲ 日 ▼

The possible images

Corollary 2

Let $f = \sum a_n q^n \in S_k(\operatorname{SL}_2(\mathbb{Z}), \mathbb{Z})$ be a normalized eigenform and ρ_ℓ be the Galois representation given by Serre-Deligne. Suppose that the image of $\tilde{\rho_\ell}$ does not contain $\operatorname{SL}_2(\mathbb{F}_\ell)$, so that ℓ is an exceptional prime for f. Then the three cases listed in Corollary 1 imply respectively the following congruences for the coefficients of f

1 There is an integer m such that

$$a_n \equiv n^m \sigma_{k-1-2m}(n) \pmod{\ell}$$

for all n prime to ℓ .

2 $a_n \equiv 0 \pmod{\ell}$ whenever n is a quadratic non-residue $\pmod{\ell}$.

▲ 伊藤 ト ▲ 三 ト ▲ 三 ト

The possible images

Corollary 2

Let $f = \sum a_n q^n \in S_k(\operatorname{SL}_2(\mathbb{Z}), \mathbb{Z})$ be a normalized eigenform and ρ_ℓ be the Galois representation given by Serre-Deligne. Suppose that the image of $\tilde{\rho_\ell}$ does not contain $\operatorname{SL}_2(\mathbb{F}_\ell)$, so that ℓ is an exceptional prime for f. Then the three cases listed in Corollary 1 imply respectively the following congruences for the coefficients of f

1 There is an integer m such that

$$a_n \equiv n^m \sigma_{k-1-2m}(n) \pmod{\ell}$$

for all n prime to ℓ .

- 2 a_n ≡ 0 (mod ℓ) whenever n is a quadratic non-residue (mod ℓ).
- 3 $p^{1-k}a_p^2 \equiv 0, 1, 2, \text{ or } 4 \pmod{\ell}$ for all primes $p \neq \ell$.

くじ マイリン くしつ

Introduction

The possible images

 WLOG, can assume that Borel consists of upper triangular matrices.

3

イロン イ理 とく ヨン イ ヨン

Introduction

The possible images

■ WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \text{Gal}(K_{\ell}/\mathbb{Q})$, we can write

$$\widetilde{\rho_{\ell}} = \begin{pmatrix} a(\sigma) & b(\sigma) \\ 0 & d(\sigma) \end{pmatrix}$$

э

Introduction

The possible images

■ WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \text{Gal}(K_{\ell}/\mathbb{Q})$, we can write

$$\widetilde{\rho_{\ell}} = \begin{pmatrix} a(\sigma) & b(\sigma) \\ 0 & d(\sigma) \end{pmatrix}$$

2 So $a(\sigma) : \operatorname{Gal}(K_{\ell}/\mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^*$ is a continuous homomorphism

3

イロン イヨン イヨン

Introduction

The possible images

■ WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \text{Gal}(K_{\ell}/\mathbb{Q})$, we can write

$$\widetilde{\rho_{\ell}} = \begin{pmatrix} a(\sigma) & b(\sigma) \\ 0 & d(\sigma) \end{pmatrix}$$

2 So $a(\sigma) : \operatorname{Gal}(K_{\ell}/\mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^*$ is a continuous homomorphism hence equals $\widetilde{\chi_{\ell}}^m$.

イロン イヨン イヨン

Introduction

The possible images

■ WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \text{Gal}(K_{\ell}/\mathbb{Q})$, we can write

$$\widetilde{\rho_{\ell}} = \begin{pmatrix} a(\sigma) & b(\sigma) \\ 0 & d(\sigma) \end{pmatrix}$$

2 So $a(\sigma) : \operatorname{Gal}(K_{\ell}/\mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^*$ is a continuous homomorphism hence equals $\widetilde{\chi_{\ell}}^m$. So $d = \widetilde{\chi_{\ell}}^{k-1-m}$ and

イロン イヨン イヨン

Introduction

The possible images

■ WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \text{Gal}(K_{\ell}/\mathbb{Q})$, we can write

$$\widetilde{\rho_{\ell}} = \begin{pmatrix} a(\sigma) & b(\sigma) \\ 0 & d(\sigma) \end{pmatrix}$$

2 So $a(\sigma) : \operatorname{Gal}(K_{\ell}/\mathbb{Q}) \longrightarrow \mathbb{F}_{\ell}^*$ is a continuous homomorphism hence equals $\widetilde{\chi_{\ell}}^m$. So $d = \widetilde{\chi_{\ell}}^{k-1-m}$ and

$$a_p \equiv p^m + p^{k-1-m} \pmod{\ell}$$

for $p \neq \ell$.

3 Let C be the Cartan subgroup and N its normalizer, and consider the homomorphism

$$\operatorname{Gal}(K_{\ell}/\mathbb{Q}) \longrightarrow N \longrightarrow N/C \cong \{\pm 1\}$$

イロト 不得 トイラト イラト 一日

Introduction

The possible images

1 It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$.

3

イロン イ理 とく ヨン イ ヨン

Introduction

The possible images

1 It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^* onto $\{\pm 1\}$ is $x \longmapsto x^2$.

э

Introduction

The possible images

- 1 It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^* onto $\{\pm 1\}$ is $x \longmapsto x^2$.
- 2 $\widetilde{\rho_{\ell}}(\operatorname{Frob}(p))$ is in $C \iff p$ is a quadratic residue $\pmod{\ell}$.

э

イロト 不得 トイヨト イヨト

Introduction

The possible images

- 1 It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^* onto $\{\pm 1\}$ is $x \longmapsto x^2$.
- 2 $\widetilde{\rho_{\ell}}(\operatorname{Frob}(p))$ is in $C \iff p$ is a quadratic residue $\pmod{\ell}$.
- 3 Let $\alpha \in N C$. Then it interchanges the two one-dimensional subspaces on which it operates.

Introduction

The possible images

- **1** It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^* onto $\{\pm 1\}$ is $x \longmapsto x^2$.
- 2 $\widetilde{\rho_{\ell}}(\operatorname{Frob}(p))$ is in $C \iff p$ is a quadratic residue $\pmod{\ell}$.
- 3 Let $\alpha \in N C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$. So $\operatorname{Trace}(\alpha) = 0$.

Introduction

The possible images

- **1** It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^* onto $\{\pm 1\}$ is $x \longmapsto x^2$.
- 2 $\widetilde{\rho_{\ell}}(\operatorname{Frob}(p))$ is in $C \iff p$ is a quadratic residue $\pmod{\ell}$.
- 3 Let $\alpha \in N C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$. So $\operatorname{Trace}(\alpha) = 0$.

4 For (iii), use every element of H has order 1, 2, 3 or 4.

Introduction

The possible images

- **1** It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^* onto $\{\pm 1\}$ is $x \longmapsto x^2$.
- 2 $\widetilde{\rho_{\ell}}(\operatorname{Frob}(p))$ is in $C \iff p$ is a quadratic residue $\pmod{\ell}$.
- 3 Let $\alpha \in N C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$. So $\operatorname{Trace}(\alpha) = 0$.
- **4** For (iii), use every element of H has order 1, 2, 3 or 4.
- **5** We may distinguish (iii) from (ii) as follows: By an argument similar to used for (*ii*), the image of $Frob(p) \in A_4 \iff p$ is a quadratic residue $(mod \ l)$.

イロト 不得下 イヨト イヨト 二日

Introduction

The possible images

- **1** It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^* onto $\{\pm 1\}$ is $x \longmapsto x^2$.
- 2 $\widetilde{\rho_{\ell}}(\operatorname{Frob}(p))$ is in $C \iff p$ is a quadratic residue $\pmod{\ell}$.
- 3 Let $\alpha \in N C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$. So $\operatorname{Trace}(\alpha) = 0$.
- **4** For (iii), use every element of H has order 1, 2, 3 or 4.
- **5** We may distinguish (iii) from (ii) as follows: By an argument similar to used for (ii), the image of $Frob(p) \in A_4 \iff p$ is a quadratic residue $(\mod \ell)$.
- **6** There are infinitely many p such that Frob(p) has order 4.

イロト 不得 トイラト イラト 一日

Introduction

The possible images

- **1** It factors through $\operatorname{Gal}(K_{\ell}^{ab}/\mathbb{Q}) \cong \mathbb{Z}_{\ell}^*$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^* onto $\{\pm 1\}$ is $x \longmapsto x^2$.
- 2 $\widetilde{\rho_{\ell}}(\operatorname{Frob}(p))$ is in $C \iff p$ is a quadratic residue $\pmod{\ell}$.
- 3 Let $\alpha \in N C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$. So $\operatorname{Trace}(\alpha) = 0$.
- **4** For (iii), use every element of H has order 1, 2, 3 or 4.
- We may distinguish (iii) from (ii) as follows: By an argument similar to used for (*ii*), the image of Frob(p) ∈ A₄ ⇐⇒ p is a quadratic residue (mod ℓ).
- 6 There are infinitely many p such that $\operatorname{Frob}(p)$ has order 4. For such p's, $p^{1-k}a_p^2 \equiv 2 \pmod{\ell}$.

イロト 不得 トイヨト イヨト 二日