ℓ-adic representations and congruences for congruences of modular forms

Ajay Prajapati
Indian Institute of Science, Bangalore

December 12, 2023

Overview

Introduction
The possible images

1 Introduction
$\boxed{2}$ The possible images

Overview

11 Introduction

2 The possible images

Ramanujan Δ function

$$
\Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

Ramanujan Δ function

$$
\Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

and the associated Dirichlet series has the Euler product expansion

$$
\sum_{n=1}^{\infty} \tau(n) n^{-s}=\prod_{n=1}^{\infty} \frac{1}{\left(1-\tau(p) p^{-s}+p^{11-2 s}\right)}
$$

Ramanujan Δ function

$$
\Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

and the associated Dirichlet series has the Euler product expansion

$$
\sum_{n=1}^{\infty} \tau(n) n^{-s}=\prod_{n=1}^{\infty} \frac{1}{\left(1-\tau(p) p^{-s}+p^{11-2 s}\right)}
$$

Ramanujan was the first to observe that, modulo certain powers of certain small primes, there are congruences which connect $\tau(n)$ with some of the $\sigma_{\nu}(n)$.

Ramanujan Δ function

$$
\Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

and the associated Dirichlet series has the Euler product expansion

$$
\sum_{n=1}^{\infty} \tau(n) n^{-s}=\prod_{n=1}^{\infty} \frac{1}{\left(1-\tau(p) p^{-s}+p^{11-2 s}\right)}
$$

Ramanujan was the first to observe that, modulo certain powers of certain small primes, there are congruences which connect $\tau(n)$ with some of the $\sigma_{\nu}(n)$.

$$
\tau(n) \equiv \sigma_{11}(n) \quad(\bmod 691)
$$

Congruences

$$
\begin{array}{rllll}
\tau(n) \equiv \sigma_{11}(n) & \left(\bmod 2^{11}\right) & \text { if } & n \equiv 1 & (\bmod 8) \\
\tau(n) \equiv 1217 \sigma_{11}(n) & \left(\bmod 2^{13}\right) & \text { if } & n \equiv 3 & (\bmod 8) \\
\tau(n) \equiv 1537 \sigma_{11}(n) & \left(\bmod 2^{12}\right) & \text { if } & n \equiv 5 & (\bmod 8) \\
\tau(n) \equiv 705 \sigma_{11}(n) & \left(\bmod 2^{14}\right) & \text { if } & n \equiv 7 & (\bmod 8)
\end{array}
$$

Congruences

$$
\begin{array}{rllll}
\tau(n) \equiv \sigma_{11}(n) & \left(\bmod 2^{11}\right) & \text { if } & n \equiv 1 & (\bmod 8) \\
\tau(n) \equiv 1217 \sigma_{11}(n) & \left(\bmod 2^{13}\right) & \text { if } & n \equiv 3 & (\bmod 8) \\
\tau(n) \equiv 1537 \sigma_{11}(n) & \left(\bmod 2^{12}\right) & \text { if } & n \equiv 5 & (\bmod 8) \\
\tau(n) \equiv 705 \sigma_{11}(n) & \left(\bmod 2^{14}\right) & \text { if } & n \equiv 7 & (\bmod 8) \\
& & & & \\
\tau(n) \equiv n^{-610} \sigma_{1231}(n) & \left(\bmod 3^{6}\right) & \text { if } & n \equiv 1 & (\bmod 3) \\
\tau(n) \equiv n^{-610} \sigma_{1231}(n) & \left(\bmod 3^{7}\right) & \text { if } & n \equiv 2 & (\bmod 3)
\end{array}
$$

Congruences

$$
\begin{array}{rllll}
\tau(n) \equiv \sigma_{11}(n) & \left(\bmod 2^{11}\right) & \text { if } & n \equiv 1 & (\bmod 8) \\
\tau(n) \equiv 1217 \sigma_{11}(n) & \left(\bmod 2^{13}\right) & \text { if } & n \equiv 3 & (\bmod 8) \\
\tau(n) \equiv 1537 \sigma_{11}(n) & \left(\bmod 2^{12}\right) & \text { if } & n \equiv 5 & (\bmod 8) \\
\tau(n) \equiv 705 \sigma_{11}(n) & \left(\bmod 2^{14}\right) & \text { if } & n \equiv 7 & (\bmod 8) \\
& & & & \\
& & & & \\
\tau(n) \equiv n^{-610} \sigma_{1231}(n) & \left(\bmod 3^{6}\right) & \text { if } & n \equiv 1 & (\bmod 3) \\
\tau(n) \equiv n^{-610} \sigma_{1231}(n) & \left(\bmod 3^{7}\right) & \text { if } & n \equiv 2 & (\bmod 3)
\end{array}
$$

$$
\tau(n) \equiv n^{-30} \sigma_{71}(n) \quad\left(\bmod 5^{3}\right) \quad \text { if } \quad(n, 5)=1
$$

$$
\begin{gathered}
\tau(n) \equiv n \sigma_{9}(n) \quad(\bmod 7) \quad \text { if } \quad n \equiv 0,1,2, \text { or } 4 \quad(\bmod 7) \\
\tau(n) \equiv n \sigma_{9}(n) \quad\left(\bmod 7^{2}\right) \quad \text { if } \quad n \equiv 3,5, \text { or } 7 \quad(\bmod 7)
\end{gathered}
$$

$$
\begin{gathered}
\tau(n) \equiv n \sigma_{9}(n) \quad(\bmod 7) \quad \text { if } \quad n \equiv 0,1,2, \text { or } 4 \quad(\bmod 7) \\
\tau(n) \equiv n \sigma_{9}(n) \quad\left(\bmod 7^{2}\right) \quad \text { if } \quad n \equiv 3,5, \text { or } 7 \quad(\bmod 7)
\end{gathered}
$$

$$
\begin{array}{rlll}
\tau(n) \equiv 0 & (\bmod 23) & \text { if } \quad\left(\frac{p}{23}\right)=1 \\
\tau(n) \equiv 2 & (\bmod 23) & \text { if } \quad p=u^{2}+23 v^{2} \text { for integers } u \neq 0, v \\
\tau(n) \equiv-1 & (\bmod 23) & \text { for other } p \neq 23
\end{array}
$$

$$
\begin{gathered}
\tau(n) \equiv n \sigma_{9}(n) \quad(\bmod 7) \quad \text { if } \quad n \equiv 0,1,2, \text { or } 4 \quad(\bmod 7) \\
\tau(n) \equiv n \sigma_{9}(n) \quad\left(\bmod 7^{2}\right) \quad \text { if } \quad n \equiv 3,5, \text { or } 7 \quad(\bmod 7)
\end{gathered}
$$

$$
\begin{array}{rlll}
\tau(n) \equiv 0 & (\bmod 23) & \text { if } \quad\left(\frac{p}{23}\right)=1 \\
\tau(n) \equiv 2 & (\bmod 23) & \text { if } \quad p=u^{2}+23 v^{2} \text { for integers } u \neq 0, v \\
\tau(n) \equiv-1 & (\bmod 23) & \text { for other } p \neq 23
\end{array}
$$

$$
\tau(n) \equiv \sigma_{11}(n) \quad(\bmod 691)
$$

Two natural questions

1 Are there congruences for $\tau(n)$ modulo primes other than $2,3,5,7,23$, and 691 ?

Two natural questions

1 Are there congruences for $\tau(n)$ modulo primes other than $2,3,5,7,23$, and 691 ?
2 Are the congruences previously mentioned best possible or could one prove congruences modulo even higher powers?

Two natural questions

1 Are there congruences for $\tau(n)$ modulo primes other than $2,3,5,7,23$, and 691 ?
2 Are the congruences previously mentioned best possible or could one prove congruences modulo even higher powers?
3 Are there similar congruences for fourier coefficients of other cusp forms?

Theorem (Serre-Deligne)

$$
\text { Let } f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \text {, and suppose }
$$

Theorem (Serre-Deligne)

$$
\begin{aligned}
& \text { Introduction } \\
& \begin{array}{l}
\text { The possible } \\
\text { images }
\end{array} \\
& \text { Let } f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \text {, and suppose } \\
& \text { 1 } a_{1}=1,
\end{aligned}
$$

Theorem (Serre-Deligne)

$$
\begin{aligned}
& \text { Introduction } \\
& \text { Let } f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right) \text {, and suppose } \\
& \text { 1) } a_{1}=1 \text {, } \\
& \underline{2} \text { every } a_{n} \in \mathbb{Z} \text {, }
\end{aligned}
$$

Theorem (Serre-Deligne)

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\operatorname{SL}_{2}(\mathbb{Z})\right)$, and suppose
$11 a_{1}=1$,
$\boxed{2}$ every $a_{n} \in \mathbb{Z}$,
3 associated Dirichlet series has the Euler product expansion

$$
\sum_{n=1}^{\infty} a_{n} n^{-s}=\prod_{n=1}^{\infty} \frac{1}{\left(1-a_{p} p^{-s}+p^{11-2 s}\right)}
$$

Theorem (Serre-Deligne)

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$, and suppose
$1 a_{1}=1$,
$\underline{2}$ every $a_{n} \in \mathbb{Z}$,
3 associated Dirichlet series has the Euler product expansion

$$
\sum_{n=1}^{\infty} a_{n} n^{-s}=\prod_{n=1}^{\infty} \frac{1}{\left(1-a_{p} p^{-s}+p^{11-2 s}\right)}
$$

Then there is a continuous homomorphism

$$
\rho_{\ell}: \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)
$$

depending on f,

Theorem (Serre-Deligne)

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$, and suppose
1 $a_{1}=1$,
2 every $a_{n} \in \mathbb{Z}$,
3 associated Dirichlet series has the Euler product expansion

$$
\sum_{n=1}^{\infty} a_{n} n^{-s}=\prod_{n=1}^{\infty} \frac{1}{\left(1-a_{p} p^{-s}+p^{11-2 s}\right)}
$$

Then there is a continuous homomorphism

$$
\rho_{\ell}: \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right),
$$

depending on f, such that $\rho_{\ell}\left(\operatorname{Frob}_{p}\right)$ has char. polynomial

$$
X^{2}-a_{p} X+p^{k-1}
$$

for each $p \neq \ell$.

1 Conditions on f are satisfied by unique cusp forms of weights $12,16,18,20,22,26$.

1 Conditions on f are satisfied by unique cusp forms of weights $12,16,18,20,22,26$.
[2 This theorem implies

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

1 Conditions on f are satisfied by unique cusp forms of weights $12,16,18,20,22,26$.
2 This theorem implies

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

Intuition: If the image of ρ_{ℓ} is small enough, a knowledge of the determinant of an element of the image will imply some ℓ-adic information about the trace of that element;

1 Conditions on f are satisfied by unique cusp forms of weights $12,16,18,20,22,26$.
2 This theorem implies

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

Intuition: If the image of ρ_{ℓ} is small enough, a knowledge of the determinant of an element of the image will imply some ℓ-adic information about the trace of that element; and so in particular a (approximate ℓ-adic) knowledge of p will imply some ℓ-adic information about a_{p}.

1 Conditions on f are satisfied by unique cusp forms of weights $12,16,18,20,22,26$.
2 This theorem implies

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

Intuition: If the image of ρ_{ℓ} is small enough, a knowledge of the determinant of an element of the image will imply some ℓ-adic information about the trace of that element; and so in particular a (approximate ℓ-adic) knowledge of p will imply some ℓ-adic information about a_{p}.
3 Converse also holds.

Lemma

Suppose that $\ell>3$ and that $G \leq \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be a closed subgroup.

Lemma

Suppose that $\ell>3$ and that $G \leq \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be a closed subgroup. If the image of G under the map

$$
(\bmod \ell): \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

contains $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$

Lemma

Suppose that $\ell>3$ and that $G \leq \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be a closed subgroup. If the image of G under the map

$$
(\bmod \ell): \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

contains $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$ then G contains $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$.
Proof (outline)
1 Let $G_{n}=\operatorname{Image}\left(G \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)\right)$.

Lemma

Suppose that $\ell>3$ and that $G \leq \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be a closed subgroup. If the image of G under the map

$$
(\bmod \ell): \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

contains $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$ then G contains $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$.
Proof (outline)
1 Let $G_{n}=\operatorname{Image}\left(G \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)\right)$. Enough to prove that $G_{n} \supset \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ for each $n>0$.

Lemma

Suppose that $\ell>3$ and that $G \leq \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be a closed subgroup. If the image of G under the map

$$
(\bmod \ell): \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

contains $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$ then G contains $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$.

Proof (outline)

1 Let $G_{n}=\operatorname{Image}\left(G \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)\right)$. Enough to prove that $G_{n} \supset \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ for each $n>0$.
2 Let $H_{n}=\operatorname{ker}\left(\mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right) \longrightarrow \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n-1} \mathbb{Z}\right)\right)$.

Lemma

Suppose that $\ell>3$ and that $G \leq \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be a closed subgroup. If the image of G under the map

$$
(\bmod \ell): \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

contains $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$ then G contains $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$.

Proof (outline)

1 Let $G_{n}=\operatorname{Image}\left(G \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)\right)$. Enough to prove that $G_{n} \supset \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ for each $n>0$.
2 Let $H_{n}=\operatorname{ker}\left(\mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right) \longrightarrow \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n-1} \mathbb{Z}\right)\right)$. It is sufficient to prove that $H_{n} \subset G_{n}$ for each $n>1$.

Lemma

Suppose that $\ell>3$ and that $G \leq \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be a closed subgroup. If the image of G under the map

$$
(\bmod \ell): \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

contains $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$ then G contains $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$.

Proof (outline)

1 Let $G_{n}=\operatorname{Image}\left(G \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)\right)$. Enough to prove that $G_{n} \supset \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ for each $n>0$.
2 Let $H_{n}=\operatorname{ker}\left(\mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right) \longrightarrow \mathrm{SL}_{2}\left(\mathbb{Z} / \ell^{n-1} \mathbb{Z}\right)\right)$. It is sufficient to prove that $H_{n} \subset G_{n}$ for each $n>1$.
$3 H_{2}$ is generated by three matrices $I+\ell u$ where

$$
u=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right)
$$

Proof Outline

1 In each case, $I+u \in \mathrm{SL}_{2}(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I+u(\bmod \ell)$.

Proof Outline

1 In each case, $I+u \in \mathrm{SL}_{2}(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I+u(\bmod \ell)$. i.e. $\sigma=I+u+\ell v$ where $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$.

Proof Outline

1 In each case, $I+u \in \mathrm{SL}_{2}(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I+u(\bmod \ell)$. i.e. $\sigma=I+u+\ell v$ where $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$. Now
$\sigma^{\ell}=I+\ell(u+\ell v)+\ldots+(u+\ell v)^{\ell} \equiv I+\ell u \quad\left(\bmod \ell^{2}\right)$.
because $u^{2}=0$ in each case.

Proof Outline

1 In each case, $I+u \in \mathrm{SL}_{2}(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I+u(\bmod \ell)$. i.e. $\sigma=I+u+\ell v$ where $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$. Now $\sigma^{\ell}=I+\ell(u+\ell v)+\ldots+(u+\ell v)^{\ell} \equiv I+\ell u \quad\left(\bmod \ell^{2}\right)$.
because $u^{2}=0$ in each case.
2 So $G_{2} \supset H_{2}$. Now we assume that $G_{n-1} \supset H_{n-1}$.

Proof Outline

1 In each case, $I+u \in \mathrm{SL}_{2}(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I+u(\bmod \ell)$. i.e. $\sigma=I+u+\ell v$ where $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$. Now $\sigma^{\ell}=I+\ell(u+\ell v)+\ldots+(u+\ell v)^{\ell} \equiv I+\ell u \quad\left(\bmod \ell^{2}\right)$. because $u^{2}=0$ in each case.
2 So $G_{2} \supset H_{2}$. Now we assume that $G_{n-1} \supset H_{n-1}$. Let $I+\ell^{n-1} v$ (with $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$) be representative of an element of G_{n}.
$3 I+\ell^{n-2} v\left(\bmod \ell^{n-1}\right)$ is in H_{n-1}.

Proof Outline

1 In each case, $I+u \in \mathrm{SL}_{2}(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I+u(\bmod \ell)$. i.e. $\sigma=I+u+\ell v$ where $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$. Now
$\sigma^{\ell}=I+\ell(u+\ell v)+\ldots+(u+\ell v)^{\ell} \equiv I+\ell u \quad\left(\bmod \ell^{2}\right)$.
because $u^{2}=0$ in each case.
2 So $G_{2} \supset H_{2}$. Now we assume that $G_{n-1} \supset H_{n-1}$. Let $I+\ell^{n-1} v$ (with $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$) be representative of an element of G_{n}.
$3 I+\ell^{n-2} v\left(\bmod \ell^{n-1}\right)$ is in H_{n-1}. By induction hypothesis, $\exists \sigma \in G$ such that

$$
\sigma \equiv I+\ell^{n-2} v \quad\left(\bmod \ell^{n-1}\right)
$$

Proof Outline

1 In each case, $I+u \in \mathrm{SL}_{2}(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I+u(\bmod \ell)$. i.e. $\sigma=I+u+\ell v$ where $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$. Now
$\sigma^{\ell}=I+\ell(u+\ell v)+\ldots+(u+\ell v)^{\ell} \equiv I+\ell u \quad\left(\bmod \ell^{2}\right)$.
because $u^{2}=0$ in each case.
2 So $G_{2} \supset H_{2}$. Now we assume that $G_{n-1} \supset H_{n-1}$. Let $I+\ell^{n-1} v$ (with $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$) be representative of an element of G_{n}.
$3 I+\ell^{n-2} v\left(\bmod \ell^{n-1}\right)$ is in H_{n-1}. By induction hypothesis, $\exists \sigma \in G$ such that

$$
\sigma \equiv I+\ell^{n-2} v \quad\left(\bmod \ell^{n-1}\right)
$$

Then

$$
\sigma^{\ell} \equiv I+\ell^{n-1} v \quad\left(\bmod \ell^{n}\right)
$$

Proof Outline

1 In each case, $I+u \in \mathrm{SL}_{2}(\mathbb{Z})$ hence $\exists \sigma \in G$ such that $\sigma \equiv I+u(\bmod \ell)$. i.e. $\sigma=I+u+\ell v$ where $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$. Now
$\sigma^{\ell}=I+\ell(u+\ell v)+\ldots+(u+\ell v)^{\ell} \equiv I+\ell u \quad\left(\bmod \ell^{2}\right)$.
because $u^{2}=0$ in each case.
2 So $G_{2} \supset H_{2}$. Now we assume that $G_{n-1} \supset H_{n-1}$. Let $I+\ell^{n-1} v$ (with $v \in M_{2}\left(\mathbb{Z}_{\ell}\right)$) be representative of an element of G_{n}.
$3 I+\ell^{n-2} v\left(\bmod \ell^{n-1}\right)$ is in H_{n-1}. By induction hypothesis, $\exists \sigma \in G$ such that

$$
\sigma \equiv I+\ell^{n-2} v \quad\left(\bmod \ell^{n-1}\right)
$$

Then

$$
\sigma^{\ell} \equiv I+\ell^{n-1} v \quad\left(\bmod \ell^{n}\right)
$$

So $G_{n} \supset H_{n}$.

There are analogous results for $\ell=2$ and $\ell=3$, in which \mathbb{F}_{ℓ} is replaced by $\mathbb{Z} / 8 \mathbb{Z}$ or $\mathbb{Z} / 9 \mathbb{Z}$ respectively.

There are analogous results for $\ell=2$ and $\ell=3$, in which \mathbb{F}_{ℓ} is replaced by $\mathbb{Z} / 8 \mathbb{Z}$ or $\mathbb{Z} / 9 \mathbb{Z}$ respectively.

Definition
ℓ is called an exceptional prime for the cusp form f if the image of ρ_{ℓ} does not contain $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$.

There are analogous results for $\ell=2$ and $\ell=3$, in which \mathbb{F}_{ℓ} is replaced by $\mathbb{Z} / 8 \mathbb{Z}$ or $\mathbb{Z} / 9 \mathbb{Z}$ respectively.

Definition
ℓ is called an exceptional prime for the cusp form f if the image of ρ_{ℓ} does not contain $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$.

Corollary

Suppose that $\ell>3$; then ℓ is exceptional for $f \Longleftrightarrow$ the image of $\widetilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$.

There are analogous results for $\ell=2$ and $\ell=3$, in which \mathbb{F}_{ℓ} is replaced by $\mathbb{Z} / 8 \mathbb{Z}$ or $\mathbb{Z} / 9 \mathbb{Z}$ respectively.

Definition

ℓ is called an exceptional prime for the cusp form f if the image of ρ_{ℓ} does not contain $\mathrm{SL}_{2}\left(\mathbb{Z}_{\ell}\right)$.

Corollary

Suppose that $\ell>3$; then ℓ is exceptional for $f \Longleftrightarrow$ the image of $\widetilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$.
For $\ell=2$ or 3 this is still a sufficient condition for ℓ to be exceptional for f.

Overview

Introduction
The possible images

1 Introduction

2 The possible images

Standard subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$

Introduction
The possible images
$\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ acts on $V \cong \mathbb{F}_{\ell}^{2}$.

Standard subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$

Introduction

The possible images
$\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ acts on $V \cong \mathbb{F}_{\ell}^{2}$.
Definition
A Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Standard subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$

Introduction
The possible images
$\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ acts on $V \cong \mathbb{F}_{\ell}^{2}$.
Definition
A Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative subgroup.

Standard subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$

$\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ acts on $V \cong \mathbb{F}_{\ell}^{2}$.
Definition
A Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative subgroup. For $\ell>2$, a split Cartan subgroup is any subgroup conjugate to the group of non-singular diagonal matrices.

Standard subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$

$\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ acts on $V \cong \mathbb{F}_{\ell}^{2}$.

Definition

A Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative subgroup. For $\ell>2$, a split Cartan subgroup is any subgroup conjugate to the group of non-singular diagonal matrices.

It is isomorphic to $(\mathbb{Z} /(\ell-1) \mathbb{Z})^{2}$.

Standard subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$

$\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ acts on $V \cong \mathbb{F}_{\ell}^{2}$.
Definition
A Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ is any subgroup conjugate to the group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative subgroup. For $\ell>2$, a split Cartan subgroup is any subgroup conjugate to the group of non-singular diagonal matrices.

It is isomorphic to $(\mathbb{Z} /(\ell-1) \mathbb{Z})^{2}$.
Similarly, non-split Cartan subgroup is defined. It is isomorphic to $\mathbb{F}_{\ell^{2}}$.

The possible images

Theorem
Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Theorem

Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$. If ℓ divides the order of G, then either

Introduction
The possible images

Theorem
Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
If ℓ divides the order of G, then either
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, or

Introduction
The possible images

Theorem
Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
If ℓ divides the order of G, then either
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, or
$2 \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \subset G$.

Introduction
The possible images

Theorem
Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
If ℓ divides the order of G, then either
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, or
$2 \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \subset G$.
If $(|G|, \ell)=1$, let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$; then

Theorem
Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
If ℓ divides the order of G, then either
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, or
$2 \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \subset G$.
If $(|G|, \ell)=1$, let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$; then
$1 H$ is cyclic and G is contained in a Cartan subgroup, or

Theorem

Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
If ℓ divides the order of G, then either
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, or
$2 \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \subset G$.
If $(|G|, \ell)=1$, let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$; then
$1 H$ is cyclic and G is contained in a Cartan subgroup, or
$2 H$ is dihedral and G is contained in the normalizer of a Cartan subgroup but not in the Cartan subgroup itself, or

Theorem

Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
If ℓ divides the order of G, then either
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, or
$2 \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \subset G$.
If $(|G|, \ell)=1$, let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$; then
$1 H$ is cyclic and G is contained in a Cartan subgroup, or
$2 H$ is dihedral and G is contained in the normalizer of a Cartan subgroup but not in the Cartan subgroup itself, or
$3 H$ is isomorphic to A_{4}, S_{4}, or A_{5}.
In case (ii) ℓ must be odd;

Theorem

Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
If ℓ divides the order of G, then either
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, or
$2 \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \subset G$.
If $(|G|, \ell)=1$, let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$; then
$1 H$ is cyclic and G is contained in a Cartan subgroup, or
$2 H$ is dihedral and G is contained in the normalizer of a Cartan subgroup but not in the Cartan subgroup itself, or
$3 H$ is isomorphic to A_{4}, S_{4}, or A_{5}.
In case (ii) ℓ must be odd;
in case (iii) ℓ must be prime to 6,6 , or 30 respectively.

Corollary 1
Let $\rho_{\ell}: \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be any continuous homomorphism such that

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

for some even integer k.

Corollary 1

Let $\rho_{\ell}: \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be any continuous homomorphism such that

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

for some even integer k. Let $G \subset \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ be the image of $\widetilde{\rho}_{\ell}$ and let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Corollary 1

Let $\rho_{\ell}: \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be any continuous homomorphism such that

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

for some even integer k. Let $G \subset \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ be the image of $\widetilde{\rho}_{\ell}$ and let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$. Suppose that G does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$.

Corollary 1

Let $\rho_{\ell}: \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be any continuous homomorphism such that

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

for some even integer k. Let $G \subset \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ be the image of $\widetilde{\rho}_{\ell}$ and let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$. Suppose that G does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$. Then
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$; or

Corollary 1

Let $\rho_{\ell}: \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be any continuous homomorphism such that

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

for some even integer k. Let $G \subset \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ be the image of $\widetilde{\rho}_{\ell}$ and let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$. Suppose that G does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$. Then
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$; or
$2 . G$ is contained in the normalizer of a Cartan subgroup, but not in the Cartan subgroup itself; or

Corollary 1

Let $\rho_{\ell}: \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ be any continuous homomorphism such that

$$
\operatorname{det} \circ \rho_{\ell}=\chi_{\ell}^{k-1}
$$

for some even integer k. Let $G \subset \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ be the image of $\widetilde{\rho}_{\ell}$ and let H be the image of G in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$. Suppose that G does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$. Then
$1 G$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$; or
$2 G$ is contained in the normalizer of a Cartan subgroup, but not in the Cartan subgroup itself; or
(3) $H \cong S_{4}$.

Proof Outline

Introduction

The possible images

1 Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.

Proof Outline

Introduction

The possible images

1 Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
2 Let C be a non-split Cartan subgroup. So C is cyclic of order $\left(\ell^{2}-1\right)$.

Proof Outline

Introduction

The possible images

1 Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
2 Let C be a non-split Cartan subgroup. So C is cyclic of order $\left(\ell^{2}-1\right)$. Now $\widetilde{\rho}_{\ell}$ factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$.
3 Since $\left(\left|\operatorname{Im}\left(\mathbb{Z}_{\ell}^{*}\right)\right|, \ell\right)=1,\left|\operatorname{Im}\left(\mathbb{Z}_{\ell}^{*}\right)\right|| |(\ell-1)$.

Proof Outline

1 Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
2 Let C be a non-split Cartan subgroup. So C is cyclic of order $\left(\ell^{2}-1\right)$. Now $\widetilde{\rho}_{\ell}$ factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$.
3 Since $\left(\left|\operatorname{Im}\left(\mathbb{Z}_{\ell}^{*}\right)\right|, \ell\right)=1,\left|\operatorname{Im}\left(\mathbb{Z}_{\ell}^{*}\right)\right|| |(\ell-1)$. Thus image lies in a Borel subgroup.
4 Now we prove that $H \neq A_{4}$ or A_{5}.

Proof Outline

1 Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
2 Let C be a non-split Cartan subgroup. So C is cyclic of order $\left(\ell^{2}-1\right)$. Now $\widetilde{\rho_{\ell}}$ factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$.
3 Since $\left(\left|\operatorname{Im}\left(\mathbb{Z}_{\ell}^{*}\right)\right|, \ell\right)=1,\left|\operatorname{Im}\left(\mathbb{Z}_{\ell}^{*}\right)\right|| |(\ell-1)$. Thus image lies in a Borel subgroup.
4 Now we prove that $H \neq A_{4}$ or A_{5}. We assume $\ell>2$. Consider the commutative diagram:

Proof Outline

1 Any subgroup of a split Cartan subgroup is contained in a Borel subgroup.
2 Let C be a non-split Cartan subgroup. So C is cyclic of order $\left(\ell^{2}-1\right)$. Now $\widetilde{\rho_{\ell}}$ factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$.
3 Since $\left(\left|\operatorname{Im}\left(\mathbb{Z}_{\ell}^{*}\right)\right|, \ell\right)=1,\left|\operatorname{Im}\left(\mathbb{Z}_{\ell}^{*}\right)\right|| |(\ell-1)$. Thus image lies in a Borel subgroup.
4 Now we prove that $H \neq A_{4}$ or A_{5}. We assume $\ell>2$. Consider the commutative diagram:

Image of G in \mathbb{F}_{ℓ}^{*} consists of all $(k-1)^{t h}$ powers and k is even.

Introduction
The possible images

Corollary 2

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Z}\right)$ be a normalized eigenform and ρ_{ℓ} be the Galois representation given by Serre-Deligne.

Corollary 2

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Z}\right)$ be a normalized eigenform and ρ_{ℓ} be the Galois representation given by Serre-Deligne. Suppose that the image of $\widetilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$, so that ℓ is an exceptional prime for f.

Corollary 2

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Z}\right)$ be a normalized eigenform and ρ_{ℓ} be the Galois representation given by Serre-Deligne. Suppose that the image of $\widetilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$, so that ℓ is an exceptional prime for f.
Then the three cases listed in Corollary 1 imply respectively the following congruences for the coefficients of f

Corollary 2

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Z}\right)$ be a normalized eigenform and ρ_{ℓ} be the Galois representation given by Serre-Deligne. Suppose that the image of $\widetilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$, so that ℓ is an exceptional prime for f.
Then the three cases listed in Corollary 1 imply respectively the following congruences for the coefficients of f

1 There is an integer m such that

$$
a_{n} \equiv n^{m} \sigma_{k-1-2 m}(n) \quad(\bmod \ell)
$$

for all n prime to ℓ.

Corollary 2

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Z}\right)$ be a normalized eigenform and ρ_{ℓ} be the Galois representation given by Serre-Deligne. Suppose that the image of $\widetilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$, so that ℓ is an exceptional prime for f.
Then the three cases listed in Corollary 1 imply respectively the following congruences for the coefficients of f

1 There is an integer m such that

$$
a_{n} \equiv n^{m} \sigma_{k-1-2 m}(n) \quad(\bmod \ell)
$$

for all n prime to ℓ.
$2 a_{n} \equiv 0(\bmod \ell)$ whenever n is a quadratic non-residue $(\bmod \ell)$.

Corollary 2

Let $f=\Sigma a_{n} q^{n} \in \mathcal{S}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z}), \mathbb{Z}\right)$ be a normalized eigenform and ρ_{ℓ} be the Galois representation given by Serre-Deligne. Suppose that the image of $\widetilde{\rho_{\ell}}$ does not contain $\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$, so that ℓ is an exceptional prime for f.
Then the three cases listed in Corollary 1 imply respectively the following congruences for the coefficients of f

1 There is an integer m such that

$$
a_{n} \equiv n^{m} \sigma_{k-1-2 m}(n) \quad(\bmod \ell)
$$

for all n prime to ℓ.
$2 a_{n} \equiv 0(\bmod \ell)$ whenever n is a quadratic non-residue $(\bmod \ell)$.
$3 p^{1-k} a_{p}^{2} \equiv 0,1,2$, or $4(\bmod \ell)$ for all primes $p \neq \ell$.

Proof Outline

Introduction
The possible images

1 WLOG, can assume that Borel consists of upper triangular matrices.

Proof Outline

Introduction

The possible images

1 WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right)$, we can write

$$
\widetilde{\rho_{\ell}}=\left(\begin{array}{cc}
a(\sigma) & b(\sigma) \\
0 & d(\sigma)
\end{array}\right)
$$

Proof Outline

Introduction

The possible images

1 WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right)$, we can write

$$
\widetilde{\rho}_{\ell}=\left(\begin{array}{cc}
a(\sigma) & b(\sigma) \\
0 & d(\sigma)
\end{array}\right)
$$

2 So $a(\sigma): \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathbb{F}_{\ell}^{*}$ is a continuous homomorphism

Proof Outline

Introduction

The possible images

1 WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right)$, we can write

$$
\widetilde{\rho_{\ell}}=\left(\begin{array}{cc}
a(\sigma) & b(\sigma) \\
0 & d(\sigma)
\end{array}\right)
$$

2 So $a(\sigma): \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathbb{F}_{\ell}^{*}$ is a continuous homomorphism hence equals $\widetilde{\chi \ell}^{m}$.

Proof Outline

1 WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right)$, we can write

$$
\widetilde{\rho}_{\ell}=\left(\begin{array}{cc}
a(\sigma) & b(\sigma) \\
0 & d(\sigma)
\end{array}\right)
$$

2 So $a(\sigma): \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathbb{F}_{\ell}^{*}$ is a continuous homomorphism hence equals $\tilde{\chi} \ell^{m}$. So $d=\tilde{\chi}_{\ell}{ }^{k-1-m}$ and

Proof Outline

1 WLOG, can assume that Borel consists of upper triangular matrices. Thus for any $\sigma \in \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right)$, we can write

$$
\widetilde{\rho_{\ell}}=\left(\begin{array}{cc}
a(\sigma) & b(\sigma) \\
0 & d(\sigma)
\end{array}\right)
$$

2 So $a(\sigma): \operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow \mathbb{F}_{\ell}^{*}$ is a continuous homomorphism hence equals $\tilde{\chi}_{\ell}{ }^{m}$. So $d=\tilde{\chi}_{\ell}{ }^{k-1-m}$ and

$$
a_{p} \equiv p^{m}+p^{k-1-m} \quad(\bmod \ell)
$$

for $p \neq \ell$.
3 Let C be the Cartan subgroup and N its normalizer, and consider the homomorphism

$$
\operatorname{Gal}\left(K_{\ell} / \mathbb{Q}\right) \longrightarrow N \longrightarrow N / C \cong\{ \pm 1\}
$$

Proof Outline

Introduction
The possible images

1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$.

Proof Outline

 images1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^{*} onto $\{ \pm 1\}$ is $x \longmapsto x^{2}$.

Proof Outline

Introduction

 The possible images1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^{*} onto $\{ \pm 1\}$ is $x \longmapsto x^{2}$.
$2 \widetilde{\rho}_{\ell}(\operatorname{Frob}(p))$ is in $C \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.

Proof Outline

1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^{*} onto $\{ \pm 1\}$ is $x \longmapsto x^{2}$.
$2 \widetilde{\rho}_{\ell}(\operatorname{Frob}(p))$ is in $C \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.
3 Let $\alpha \in N-C$. Then it interchanges the two one-dimensional subspaces on which it operates.

Proof Outline

1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^{*} onto $\{ \pm 1\}$ is $x \longmapsto x^{2}$.
$2 \widetilde{\rho}_{\ell}(\operatorname{Frob}(p))$ is in $C \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.
3 Let $\alpha \in N-C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\left(\begin{array}{ll}0 & * \\ * & 0\end{array}\right)$. So Trace $(\alpha)=0$.

Proof Outline

1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^{*} onto $\{ \pm 1\}$ is $x \longmapsto x^{2}$.
$2 \widetilde{\rho}_{\ell}(\operatorname{Frob}(p))$ is in $C \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.
3 Let $\alpha \in N-C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\left(\begin{array}{ll}0 & * \\ * & 0\end{array}\right)$. So Trace $(\alpha)=0$.
4 For (iii), use every element of H has order $1,2,3$ or 4 .

Proof Outline

1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^{*} onto $\{ \pm 1\}$ is $x \longmapsto x^{2}$.
$2 \widetilde{\rho}_{\ell}(\operatorname{Frob}(p))$ is in $C \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.
3 Let $\alpha \in N-C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\left(\begin{array}{ll}0 & * \\ * & 0\end{array}\right)$. So Trace $(\alpha)=0$.
4 For (iii), use every element of H has order $1,2,3$ or 4.
5 We may distinguish (iii) from (ii) as follows: By an argument similar to used for (ii), the image of $\operatorname{Frob}(p) \in A_{4} \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.

Proof Outline

1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^{*} onto $\{ \pm 1\}$ is $x \longmapsto x^{2}$.
$2 \widetilde{\rho}_{\ell}(\operatorname{Frob}(p))$ is in $C \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.
3 Let $\alpha \in N-C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\left(\begin{array}{ll}0 & * \\ * & 0\end{array}\right)$. So Trace $(\alpha)=0$.
4 For (iii), use every element of H has order $1,2,3$ or 4 .
5 We may distinguish (iii) from (ii) as follows: By an argument similar to used for (ii), the image of $\operatorname{Frob}(p) \in A_{4} \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.
6 There are infinitely many p such that $\operatorname{Frob}(p)$ has order 4.

Proof Outline

1 It factors through $\operatorname{Gal}\left(K_{\ell}^{a b} / \mathbb{Q}\right) \cong \mathbb{Z}_{\ell}^{*}$. The only continuous homomorphism of \mathbb{Z}_{ℓ}^{*} onto $\{ \pm 1\}$ is $x \longmapsto x^{2}$.
$2 \widetilde{\rho}_{\ell}(\operatorname{Frob}(p))$ is in $C \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.
3 Let $\alpha \in N-C$. Then it interchanges the two one-dimensional subspaces on which it operates. So can be put in the form $\left(\begin{array}{ll}0 & * \\ * & 0\end{array}\right)$. So Trace $(\alpha)=0$.
4 For (iii), use every element of H has order $1,2,3$ or 4.
5 We may distinguish (iii) from (ii) as follows: By an argument similar to used for (ii), the image of $\operatorname{Frob}(p) \in A_{4} \Longleftrightarrow p$ is a quadratic residue $(\bmod \ell)$.
6 There are infinitely many p such that $\operatorname{Frob}(p)$ has order 4. For such p^{\prime} s, $p^{1-k} a_{p}^{2} \equiv 2(\bmod \ell)$.

