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Introduction

The possible
images

Ramanujan ∆ function

∆ = q

∞∏
n=1

(1− qn)24 =

∞∑
n=1

τ(n)qn

and the associated Dirichlet series has the Euler product
expansion

∞∑
n=1

τ(n)n−s =
∞∏
n=1

1

(1− τ(p)p−s + p11−2s)

Ramanujan was the first to observe that, modulo certain
powers of certain small primes, there are congruences which
connect τ(n) with some of the σν(n).

τ(n) ≡ σ11(n) (mod 691)
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images

Congruences

τ(n) ≡ σ11(n) (mod 211) if n ≡ 1 (mod 8)

τ(n) ≡ 1217σ11(n) (mod 213) if n ≡ 3 (mod 8)

τ(n) ≡ 1537σ11(n) (mod 212) if n ≡ 5 (mod 8)

τ(n) ≡ 705σ11(n) (mod 214) if n ≡ 7 (mod 8)

τ(n) ≡ n−610σ1231(n) (mod 36) if n ≡ 1 (mod 3)

τ(n) ≡ n−610σ1231(n) (mod 37) if n ≡ 2 (mod 3)

τ(n) ≡ n−30σ71(n) (mod 53) if (n, 5) = 1
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τ(n) ≡ nσ9(n) (mod 7) if n ≡ 0, 1, 2, or 4 (mod 7)

τ(n) ≡ nσ9(n) (mod 72) if n ≡ 3, 5, or 7 (mod 7)

τ(n) ≡ 0 (mod 23) if
( p

23

)
= 1

τ(n) ≡ 2 (mod 23) if p = u2 + 23v2 for integers u 6= 0, v

τ(n) ≡ −1 (mod 23) for other p 6= 23

τ(n) ≡ σ11(n) (mod 691)
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The possible
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Two natural questions

1 Are there congruences for τ(n) modulo primes other than
2, 3, 5, 7, 23, and 691?

2 Are the congruences previously mentioned best possible or
could one prove congruences modulo even higher powers?

3 Are there similar congruences for fourier coefficients of
other cusp forms?
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Theorem (Serre-Deligne)

Let f = Σanq
n ∈ Sk(SL2(Z)), and suppose

1 a1 = 1,

2 every an ∈ Z,

3 associated Dirichlet series has the Euler product expansion

∞∑
n=1

ann
−s =

∞∏
n=1

1

(1− app−s + p11−2s)

Then there is a continuous homomorphism

ρ` : Gal(K`/Q) −→ GL2(Z`),

depending on f , such that ρ`(Frobp) has char. polynomial

X2 − apX + pk−1

for each p 6= `.
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images

1 Conditions on f are satisfied by unique cusp forms of
weights 12, 16, 18, 20, 22, 26.

2 This theorem implies

det ◦ ρ` = χk−1`

Intuition: If the image of ρ` is small enough, a knowledge
of the determinant of an element of the image will imply
some `-adic information about the trace of that element;
and so in particular a (approximate `-adic) knowledge of p
will imply some `-adic information about ap.

3 Converse also holds.
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images

Lemma

Suppose that ` > 3 and that G ≤ GL2(Z`) be a closed
subgroup.

If the image of G under the map

(mod `) : GL2(Z`) −→ GL2(F`)

contains SL2(F`) then G contains SL2(Z`).

Proof (outline)

1 Let Gn = Image(G −→ GL2(Z/`nZ)). Enough to prove
that Gn ⊃ SL2(Z/`nZ) for each n > 0.

2 Let Hn = ker(SL2(Z/`nZ) −→ SL2(Z/`n−1Z)). It is
sufficient to prove that Hn ⊂ Gn for each n > 1.

3 H2 is generated by three matrices I + `u where

u =

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 −1
1 −1

)
.
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The possible
images

Proof Outline

1 In each case, I + u ∈ SL2(Z) hence ∃σ ∈ G such that
σ ≡ I + u (mod `).

i.e. σ = I + u+ `v where
v ∈M2(Z`). Now

σ` = I + `(u+ `v) + . . .+ (u+ `v)` ≡ I + `u (mod `2).

because u2 = 0 in each case.

2 So G2 ⊃ H2. Now we assume that Gn−1 ⊃ Hn−1. Let
I + `n−1v (with v ∈M2(Z`)) be representative of an
element of Gn.

3 I + `n−2v (mod `n−1) is in Hn−1. By induction
hypothesis, ∃σ ∈ G such that

σ ≡ I + `n−2v (mod `n−1).

Then
σ` ≡ I + `n−1v (mod `n).

So Gn ⊃ Hn.
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images

There are analogous results for ` = 2 and ` = 3, in which F` is
replaced by Z/8Z or Z/9Z respectively.

Definition

` is called an exceptional prime for the cusp form f if the
image of ρ` does not contain SL2(Z`).

Corollary

Suppose that ` > 3; then ` is exceptional for f ⇐⇒ the image
of ρ̃` does not contain SL2(F`).
For ` = 2 or 3 this is still a sufficient condition for ` to be
exceptional for f .
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The possible
images

Standard subgroups of GL2(F`)

GL2(F`) acts on V ∼= F2
` .

Definition

A Borel subgroup of GL2(F`) is any subgroup conjugate to the
group of non-singular upper triangular matrices.

Definition

A Cartan subgroup is a maximal semi-simple commutative
subgroup. For ` > 2, a split Cartan subgroup is any subgroup
conjugate to the group of non-singular diagonal matrices.

It is isomorphic to (Z/(`− 1)Z)2.
Similarly, non-split Cartan subgroup is defined. It is isomorphic
to F×

`2
.
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The possible
images

Theorem

Let G be a subgroup of GL2(F`).

If ` divides the order of G, then either

1 G is contained in a Borel subgroup of GL2(F`), or

2 GL2(F`) ⊂ G.

If (|G|, `) = 1, let H be the image of G in PGL2(F`); then

1 H is cyclic and G is contained in a Cartan subgroup, or

2 H is dihedral and G is contained in the normalizer of a
Cartan subgroup but not in the Cartan subgroup itself,
or

3 H is isomorphic to A4, S4, or A5.

In case (ii) ` must be odd;
in case (iii) ` must be prime to 6, 6, or 30 respectively.
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Introduction

The possible
images Corollary 1

Let ρ` : Gal(K`/Q) −→ GL2(Z`) be any continuous
homomorphism such that

det ◦ ρ` = χk−1`

for some even integer k.

Let G ⊂ GL2(F`) be the image of ρ̃`
and let H be the image of G in PGL2(F`). Suppose that G
does not contain SL2(F`). Then

1 G is contained in a Borel subgroup of GL2(F`); or

2 G is contained in the normalizer of a Cartan subgroup, but
not in the Cartan subgroup itself; or

3 H ∼= S4.
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Introduction

The possible
images

Proof Outline

1 Any subgroup of a split Cartan subgroup is contained in a
Borel subgroup.

2 Let C be a non-split Cartan subgroup. So C is cyclic of
order (`2 − 1). Now ρ̃` factors through Gal(Kab

` /Q) ∼= Z∗` .

3 Since (|Im(Z∗` )|, `) = 1, |Im(Z∗` )|| | (`− 1). Thus image
lies in a Borel subgroup.

4 Now we prove that H 6= A4 or A5. We assume ` > 2.
Consider the commutative diagram:

Gal(K`/Q) G F∗`

H F∗`/F∗`
2 ∼= {±1}

det

Image of G in F∗` consists of all (k − 1)th powers and k is
even.

Ajay Prajapati Galois Representations 17 / 20
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Introduction

The possible
images

Corollary 2

Let f = Σanq
n ∈ Sk(SL2(Z),Z) be a normalized eigenform

and ρ` be the Galois representation given by Serre-Deligne.

Suppose that the image of ρ̃` does not contain SL2(F`), so
that ` is an exceptional prime for f .
Then the three cases listed in Corollary 1 imply respectively the
following congruences for the coefficients of f

1 There is an integer m such that

an ≡ nmσk−1−2m(n) (mod `)

for all n prime to `.

2 an ≡ 0 (mod `) whenever n is a quadratic non-residue
(mod `).

3 p1−ka2p ≡ 0, 1, 2, or 4 (mod `) for all primes p 6= `.
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Introduction

The possible
images

Proof Outline

1 WLOG, can assume that Borel consists of upper triangular
matrices.

Thus for any σ ∈ Gal(K`/Q), we can write

ρ̃` =

(
a(σ) b(σ)

0 d(σ)

)

2 So a(σ) : Gal(K`/Q) −→ F∗` is a continuous

homomorphism hence equals χ̃`
m. So d = χ̃`

k−1−m and

ap ≡ pm + pk−1−m (mod `)

for p 6= `.

3 Let C be the Cartan subgroup and N its normalizer, and
consider the homomorphism

Gal(K`/Q) −→ N −→ N/C ∼= {±1}

Ajay Prajapati Galois Representations 19 / 20
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1 It factors through Gal(Kab
` /Q) ∼= Z∗` .

The only
continuous homomorphism of Z∗` onto {±1} is x 7−→ x2.

2 ρ̃`(Frob(p)) is in C ⇐⇒ p is a quadratic residue
(mod `).

3 Let α ∈ N − C. Then it interchanges the two
one-dimensional subspaces on which it operates. So can

be put in the form

(
0 ∗
∗ 0

)
. So Trace(α) = 0.

4 For (iii), use every element of H has order 1, 2, 3 or 4.

5 We may distinguish (iii) from (ii) as follows: By an
argument similar to used for (ii), the image of
Frob(p) ∈ A4 ⇐⇒ p is a quadratic residue (mod `).

6 There are infinitely many p such that Frob(p) has order 4.
For such p’s, p1−ka2p ≡ 2 (mod `).
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