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Mordell-Weil theorem for function fields

Let E −→ C be an elliptic surface defined over a field k

and let E/K
be the corresponding elliptic curve over the function field
K = k(C).If E −→ C does not split, then E(K) is a finitely
generated group.
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Motivation

Elliptic surfaces appear in many guises:

1 As elliptic curves over one-dimensional function fields, and

2 As one-parameter algebraic families of elliptic curves.

We will concentrate on those properties of elliptic surfaces which
resemble the arithmetic properties of elliptic curves defined over
number fields.

1 We will restrict attention to fields of characteristic zero. (So
that k(T ) is a perfect field and we can apply results of AEC I-III)
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Families of elliptic curves:

y2 = x3 +D and y2 = x3 +Dx

for varying D.

More generally, let k be a field with char(k) 6= 2 and
A(T ), B(T ) ∈ k(T ). Then look at the family of elliptic curves:

ET : y2 = x3 +A(T )x+B(T ) (1)

For T = t, Et will be an elliptic curve provided

A(t) 6=∞, B(t) 6=∞, and ∆(t) = −16(4A(t)3 + 27B(t)2) 6= 0.

We can also view ET as a single elliptic curve with discriminant

∆(T ) = −16(4A(T )3 + 27B(T )2) 6= 0 in k(T ).
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Example

Let C/Q be the (elliptic) curve

C : s2 − s = t3 − t2;

Then the equation

E : y2 + (st+ t− s2)xy+ s(s− 1)(s− t)t2y = x3 + s(s− 1)(s− t)tx2

defines an elliptic curve E over Q(C) of C.
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Weak Mordell-Weil Theorem [ATAEC III.2.1]

Let

k an algebraically closed field with char(k) = 0

C/k a non-singular projective curve over k

K = k(C) the function field of a curve C/k

E/K an elliptic curve

Then the quotient group E(K)/2E(K) is finite.

Proof in case of number fields

1 Step I: The extension field L = K([m]−1E(K)) is an abelian
extension of K, has exponent m, and is unramified outside a
certain finite set of primes S.

2 Step II: We use Kummer theory to show that the maximal
abelian extension of K of exponent m unramified outside of S is
a finite extension. [VIII.1.6]
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1 If K = k(C) is a function field, then the ”unit group” in K∗ is
the constant field k∗.

2 The ”ideal class group” of a function field K = k(C) is the
Picard group Pic(C). The Picard group need not be finitely
generated.

3 We only used the facts that the ideal class group has only
finitely many elements of order m and the unit group R∗ has the
property that the quotient R∗/(R∗)m is finite.

Proposition [ATAEC III.2.2]

Let C/k be a non-singular projective curve defined over field k. Then
for any integer m ≥ 1, the Picard group Pic(C)[m] is finite.
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Proof Sketch

1 If L/K is a finite Galois extension and if we can prove that
E(L)/2E(L) is finite, then E(K)/2E(K) is also finite.

2 So it suffices to prove (2.1) under the assumption that
E[2] ⊂ E(K). Equivalently, E has a Weierstrass equation

E : y2 = (x− e1)(x− e2)(x− e3) with e1, e2, e3 ∈ K.

Consider the map

φ : E(K)/2E(K) −→ (K∗/K∗2)× (K∗/K∗2)

defined by

P = (x, y) −→


(x− e1, x− e2) if x 6= e1, e2,

((e1 − e3)(e1 − e2), e1 − e2)) if x = e1,

(e2 − e1, (e2 − e3)(e2 − e1) if x = e2,

(1, 1) if x =∞(P = O).

Ajay Prajapati Arithmetic of Elliptic Curves 11 / 39
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In the case that K is a number field, it was proved in [AEC, X.1.4]
(Complete 2-descent) that φ is an injective homomorphism, and the
same proof works for an arbitrary field K.

We prove that
φ(E(K)/2E(K)) is finite.

Lemma [ATAEC III.2.3.1]

Suppose that E has a Weierstrass equation of the form

E : y2 = (x− e3)(x− e2)(x− e3) with e1, e2, e3 ∈ K.

Let S ⊂ C be the set of points where anyone of e1, e2, e3 has a pole,
together with the points where

∆ = (e1 − e2)2(e1 − e3)2(e2 − e3)2

vanishes. Then for any point P = (x, y) ∈ E(K) with x 6= e1,

ordt(x− e1) ≡ 0(mod 2) for all t ∈ C with t 6∈ S.

Here ordt : k(C)∗ −→ Z is the normalized valuation on k(C) which
measures the order of vanishing of a function at t.

Ajay Prajapati Arithmetic of Elliptic Curves 12 / 39
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measures the order of vanishing of a function at t.
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Let S be as before, and define a subgroup of K∗/K∗2 by

K(S, 2) =
{
f ∈ K∗/K∗2 : ordt(f) ≡ 0(mod2) for all t /∈ S

}
.

Then we have an injective homomorphism

φ : E(K)/2E(K) −→ K(S, 2)×K(S, 2)

Lemma [ATAEC III.2.3.2]

Let S ⊂ C be a finite set of points, and let m ≥ 1 be an
integer.Then the group

K(S,m) =

{
f ∈ K∗

K∗m
: ordt(f) ≡ 0 mod m for all t 6∈ S

}
is a finite subgroup of K∗/K∗m.

1 Reduce to the case that S = ∅.
2 Define a map K(∅,m) −→ Pic(C)[m]. Prove that it is injective.
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Let K = k(C) be the function field of a non-singular algebraic curve
C/k and let E/K be an elliptic curve defined over K.

Definition

The height of an element f ∈ K is defined to be

h(f) = deg(f : C −→ P1).

The height of a point P ∈ E(K) is defined to be

h(P ) =

{
0 if P = O,

h(x) if P = (x, y).
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(Descent Theorem)

Let A be an abelian group. Suppose that there exists a (height)
function h : A −→ R with the following three properties:

1 Let Q ∈ A. ∃ constant C1, depending on A and Q, such that

h(P +Q) ≤ 2h(P ) + C1 for all P ∈ A

2 ∃ an integer m ≥ 2 and a constant C2, depending on A, s.t.

h(mP ) ≥ m2h(P )− C2 for all P ∈ A.

3 For every constant C3, the set {P ∈ A : h(P ) ≤ C3} is finite.

Suppose further that for the integer m in (ii), the quotient group
A/mA is finite.Then A is finitely generated.
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Theorem [ATAEC III.3.2]

1 h(2P ) = 4h(P ) +O(1) for all P ∈ E(K).

2 h(P +Q) + h(P −Q) = 2h(P ) + 2h(Q) +O(1) for all
P,Q ∈ E(K).
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Fix a non-singular projective curve C/k and take

E : y2 = x3 +Ax+B

for some A,B ∈ k(C) with 4A3 + 27B2 6= 0.

Then for almost all
points t ∈ C(k̄) we can evaluate A and B at t to get an elliptic curve

Et : y2 = x3 +A(t)x+B(t).

From another point of view, we look at the subset of P2 × C defined

E = {([X,Y, Z], t) ∈ P2 × C : Y 2Z = X3 +A(t)XZ2 +B(t)Z3}.

Note that E is a subvariety of P2 × C of dimension two; it is a
surface formed from a family of elliptic curves.It also comes equipped
with a section

σ0 : C −→ E , t 7−→ Ot

where Ot = ([0, 1, 0], t).
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Let C be a non-singular projective curve.

Definition

An elliptic surface over C consists of the following data:

1 a surface E , meaning a 2 dimensional projective variety,

2 a morphism
π : E −→ C

such that for all but finitely many points t ∈ C(k), fiber

Et = π−1(t)

is a non-singular curve of genus 1,

3 a section to π, σ0 : C −→ E .

Let E −→ C be an elliptic surface. The group of sections of E over
C is denoted by E(C) = {sections σ : C −→ E}.
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Definition

1 Let π : E −→ C and π′ : E ′ −→ C be elliptic surfaces over C. A
rational map from E to E ′ over C is a rational map φ : E −→ E ′
which commutes with the projection maps, π′ ◦ φ = π.

2 The elliptic surfaces E and E ′ are birationally equivalent over C
if there is a birational isomorphism from E to E ′ over C.

We want to prove that the theory of elliptic curves over k(C) is the
same as the birational theory of elliptic surfaces.
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Proposition [ATAEC III.3.8.]

1 Let E/k(C) an elliptic curve. To each Weierstrass equn for E,

E : y2 = x3 +Ax+B, A,B ∈ k(C),

let E(A,B) be the associated elliptic surface.

Then all of the
E(A,B) associated to E are k-birationally equivalent over C.

2 Let E be an elliptic surface over C defined over k. Then E is
k-birationally equivalent over C to E(A,B) for some
A,B ∈ k(C). Further, the elliptic curve

E : y2 = x3 +Ax+B

over k(C) is uniquely determined (up to k(C)-iso) by E .

3 Let E/k(C) be an elliptic curve and E → C an elliptic surface
associated to E as in (a). Then

k(E) ∼= k(C)(E) as k(C)-algebras.
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Proof Idea:

1 Take another Weierstrass equation. Then ∃u ∈ k(C)∗ such that
u4A′ = A and u6B′ = B. Then construct an explicit birational
equivalence E(A′, B′) −→ E(A,B).

2 π : E −→ C induces an inclusion k(C) ↪−→ k(E).This is of
transcendence degree 1.So there exists a curve, unique upto
k(C)-isomorphism, such that k(C)(E) ∼= k(E) as k(C)-algebras.

3 Prove that E has genus 1.(We prove that ΩE/k(C) is atmost 1
dimensional.So E has genus atmost 1.Then derive a
contradiction assuming that E has genus 0).Furthermore, the
section σ0 : C −→ E corresponds to a point P0 ∈ E(k(C)).So E
is an elliptic curve over k(C).Write Weierstrass equation for
E : y2 = x3 +Ax+B with A,B ∈ k(C). Then E is birationally
equivalent to E(A,B).
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Proposition

Let E −→ C be an elliptic surface defined over k.

1 Let σ1, σ2 ∈ E(C/k) be sections defined over k. Then the maps
σ1 + σ2 and −σ2 described above are in E(C/k).

2 The operations (σ1, σ2) 7−→ σ1 + σ2 and σ 7→ −σ make E(C/k)
into an abelian group.

3 Let E/k(C) be the elliptic curve associated to E as described in
(3.8).Then there is a natural group isomorphism

E(k(C))
∼−→ E(C/k),

P = (xP , yP ) 7−→ (σP : t→ ((xP (t), yP (t)), t)).
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Proof Idea

1 (1) (σ1 + σ2)(t) and (−σ)(t) are rational maps. Since C is a
non-singular curve, they are morphisms.

2 (2) Associativity and commutativity holds because they hold
pointwise on an open dense subset.

3 (3) This is easy to see.
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Want to show that sets of bounded height in E(K) are necessarily
finite. But this is not true in general.

Example

let E0/k be an elliptic curve, let E = E0 × C be the elliptic surface
with E → C being projection onto the second factor, and let E/K be
the corresponding elliptic curve over K.

Then every point γ ∈ E0(k)
gives a section

σγ : C −→ E = E0 × C, t 7−→ (γ, t),

and this section corresponds to a point Pγ ∈ E(K).Clearly, distinct γ
’s give distinct Pγ ’s, and just as clearly the map

E0(k) −→ E(K), γ 7−→ Pγ ,

is a homomorphism.
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Definition

An elliptic surface E −→ C splits (over k) if there is an elliptic curve
E0/k and a birational isomorphism

i : E ∼−→ E0 × C

such that the following diagram commutes:

E E0 × C

C

i

π

proj2
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There are several other ways of characterizing split elliptic surfaces.

Proposition [ATAEC III.5.1]

Let π : E → C be an elliptic surface over k, and let E/K be the
corresponding EC over K = k(C). The following are equivalent:

1 The elliptic surface E −→ C splits over k.

2 There is an elliptic curve E0/k and an isomorphism E
∼−→ E0

defined over K.
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Example

Take C = P1 and K = k(T ), and consider the elliptic surfaces

E1 : y2 = x3 + 1, E2 : y2 = x3 + T 6,
E3 : y2 = x3 + T, E4 : y2 = x3 + x+ T.

Also let E0/k be the elliptic curve

E0 : y2 = x3 + 1

Then E1 is clearly split over k, since it is precisely E0 × C. The
surface E2 also splits over k, as can be seen from the isomorphism

E2
∼−→ E0 × C, ((x, y), t) 7−→

((
t−2x, t−3y

)
, t
)
.

The elliptic surface E3 does not split over k, although it will split if
we replace the base field k(T ) by the larger field k(T 1/6). Finally, E4
does not split over k.
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Theorem [ATAEC III.5.4]

Let E → C be an elliptic surface over an algebraically closed field
k,

let E/K be the corresponding elliptic curve over the function field
K = k(C),and let d be a constant.If the set

{P ∈ E(K) : h(P ) ≤ d}

contains infinitely many points,then E splits over k.

1 Step I: E has infinitely many sections of bounded degree (i.e.,
E(K) has infinitely many points of bounded height), then there
is a one-parameter family of such sections.

2 Step II: If there is a one-parameter family, then E splits
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Step I

Proposition [ATAEC III.5.5]

Under the assumptions of Theorem 5.4, there is a (non-singular
projective) curve Γ/k and a dominant rational map
φ : Γ× C → E

such that the following diagram commutes:

Γ× C E

C

φ

proj2
π

Proof Sketch

Fix a Weierstrass equation for E/K of the form

E : y2 = x3 +Ax+B with A,B ∈ K = k(C),

and we define a set E(K, d) = P ∈ E(K) : h(P ) ≤ d. This is given
to be infinite.
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The first step is to parametrize the set of maps from C to P2.
Given D ∈ Div(C), define a map

L(D)3\{0} −→ Map(C,P2)
(F0, F1, F2) 7−→ (t 7→ [F0(t), F1(t), F2(t)])

Let ` = dim(L(D)) then this is really a map

P3`−1 ∼=
L(D)3\{0}

k∗
−→ Map(C,P2)

Some of these maps C −→ P2 will actually correspond to elements of
E(K). The next step is to show that the maps corresponding to
E(K) form an algebraic subset of P3`−1.
We will assume henceforth that D ≥ 0, and we fix a basis f1, . . . , f`
for L(D).Further, we choose a divisor D′ ≥ 3D large enough so that
1, A,B ∈ L(D′ − 3D), and let h1, . . . , hr be a basis for L(D′).
Every element in L(D)3 can be written uniquely in the form

F = (Fa, Fb, Fc) = (
∑̀
i=1

aifi,
∑̀
i=1

bifi,
∑̀
i=1

cifi).
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The first step is to parametrize the set of maps from C to P2.
Given D ∈ Div(C), define a map

L(D)3\{0} −→ Map(C,P2)
(F0, F1, F2) 7−→ (t 7→ [F0(t), F1(t), F2(t)])

Let ` = dim(L(D)) then this is really a map

P3`−1 ∼=
L(D)3\{0}

k∗
−→ Map(C,P2)

Some of these maps C −→ P2 will actually correspond to elements of
E(K). The next step is to show that the maps corresponding to
E(K) form an algebraic subset of P3`−1.
We will assume henceforth that D ≥ 0, and we fix a basis f1, . . . , f`
for L(D).Further, we choose a divisor D′ ≥ 3D large enough so that
1, A,B ∈ L(D′ − 3D), and let h1, . . . , hr be a basis for L(D′).
Every element in L(D)3 can be written uniquely in the form

F = (Fa, Fb, Fc) = (
∑̀
i=1

aifi,
∑̀
i=1

bifi,
∑̀
i=1

cifi).
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Such an F will give an element of E(K) if and only if Fa, Fb, Fc
satisfy the homogeneous equation of E,

F 2
b Fc = F 3

a +AFaF
2
c +BF 3

c .

In other words, F will give an element of E(K) if

(
∑

bifi)
2(
∑

cifi) = (
∑

aifi)
3+A(

∑
aifi)(

∑
cifi)

2+B(
∑

cifi)
3

We can write this as
r∑
i=1

Φi(a,b, c)hi = 0

where each Φi is a homogeneous polynomial in the coordinates

[a,b, c] = [a1, . . . , a`, b1, . . . , b`, c1, . . . , c`] ∈ P3`−1.

Now the maps C → P2 from above which correspond to elements of
E(K) are associated to the points of the variety

VD :=
{

[a,b, c] ∈ P3`(D)−1 : Φi(a,b, c) = 0 for all 1 ≤ i ≤ r
}
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Lemma [ATAEC III.5.5.2]

Let g be the genus of the curve C.

If

degD ≥ g +
5

2
d+

1

2
(degA+ degB)

then the image of VD in E(K) contains E(K, d).

Proof

1 Let P = (xP , yP ) ∈ E(K, d), so, by definition,
deg(xP ) = h(P ) ≤ d. Then Weierstrass equations gives us that

deg(yP ) ≤ 3

2
d+

1

2
(deg(A) + deg(B))

2 Apply Riemann-Roch theorem to

D′′ = D − div∞(xP )− div∞(yP )

Ajay Prajapati Arithmetic of Elliptic Curves 35 / 39



Elliptic Curves
over Function
Fields

Weak Mordell
Weil Theorem

Heights

Elliptic Surfaces

Split Elliptic
Surfaces and Sets
of Bounded
Height

The Mordell Weil
Theorem for
Function Fields

Lemma [ATAEC III.5.5.2]

Let g be the genus of the curve C.If

degD ≥ g +
5

2
d+

1

2
(degA+ degB)

then the image of VD in E(K) contains E(K, d).

Proof

1 Let P = (xP , yP ) ∈ E(K, d), so, by definition,
deg(xP ) = h(P ) ≤ d. Then Weierstrass equations gives us that

deg(yP ) ≤ 3

2
d+

1

2
(deg(A) + deg(B))

2 Apply Riemann-Roch theorem to

D′′ = D − div∞(xP )− div∞(yP )

Ajay Prajapati Arithmetic of Elliptic Curves 35 / 39



Elliptic Curves
over Function
Fields

Weak Mordell
Weil Theorem

Heights

Elliptic Surfaces

Split Elliptic
Surfaces and Sets
of Bounded
Height

The Mordell Weil
Theorem for
Function Fields

Lemma [ATAEC III.5.5.2]

Let g be the genus of the curve C.If

degD ≥ g +
5

2
d+

1

2
(degA+ degB)

then the image of VD in E(K) contains E(K, d).

Proof

1 Let P = (xP , yP ) ∈ E(K, d), so, by definition,
deg(xP ) = h(P ) ≤ d.

Then Weierstrass equations gives us that

deg(yP ) ≤ 3

2
d+

1

2
(deg(A) + deg(B))

2 Apply Riemann-Roch theorem to

D′′ = D − div∞(xP )− div∞(yP )

Ajay Prajapati Arithmetic of Elliptic Curves 35 / 39



Elliptic Curves
over Function
Fields

Weak Mordell
Weil Theorem

Heights

Elliptic Surfaces

Split Elliptic
Surfaces and Sets
of Bounded
Height

The Mordell Weil
Theorem for
Function Fields

Lemma [ATAEC III.5.5.2]

Let g be the genus of the curve C.If

degD ≥ g +
5

2
d+

1

2
(degA+ degB)

then the image of VD in E(K) contains E(K, d).

Proof

1 Let P = (xP , yP ) ∈ E(K, d), so, by definition,
deg(xP ) = h(P ) ≤ d. Then Weierstrass equations gives us that

deg(yP ) ≤ 3

2
d+

1

2
(deg(A) + deg(B))

2 Apply Riemann-Roch theorem to

D′′ = D − div∞(xP )− div∞(yP )

Ajay Prajapati Arithmetic of Elliptic Curves 35 / 39



Elliptic Curves
over Function
Fields

Weak Mordell
Weil Theorem

Heights

Elliptic Surfaces

Split Elliptic
Surfaces and Sets
of Bounded
Height

The Mordell Weil
Theorem for
Function Fields

Lemma [ATAEC III.5.5.2]

Let g be the genus of the curve C.If

degD ≥ g +
5

2
d+

1

2
(degA+ degB)

then the image of VD in E(K) contains E(K, d).

Proof

1 Let P = (xP , yP ) ∈ E(K, d), so, by definition,
deg(xP ) = h(P ) ≤ d. Then Weierstrass equations gives us that

deg(yP ) ≤ 3

2
d+

1

2
(deg(A) + deg(B))

2 Apply Riemann-Roch theorem to

D′′ = D − div∞(xP )− div∞(yP )

Ajay Prajapati Arithmetic of Elliptic Curves 35 / 39



Elliptic Curves
over Function
Fields

Weak Mordell
Weil Theorem

Heights

Elliptic Surfaces

Split Elliptic
Surfaces and Sets
of Bounded
Height

The Mordell Weil
Theorem for
Function Fields

Proof continued

1 Fix a divisor D ∈ Div(C) of large enough degree so that image
of VD in E(K) is infinite.

2 Consider the associated elliptic surface E −→ C. We have
assigned to each point γ ∈ VD a point Pγ ∈ E(K), and this
corresponds to a section σγ : C −→ E . So we have a rational
map

φ : VD × C −→ E , (γ, t) 7−→ σγ(t).

3 If there exists an irreducible curve Γ ⊂ VD such that the map

φ : Γ× C −→ E , (γ, t) 7−→ σγ(t)

is dominant, then the proof of Proposition 5.5 will be complete.
So we assume that φ : Γ× C → E is not dominant for every
irreducible curve Γ ⊂ VD and derive a contradiction.

4 Replacing Γ with a non-singular model for Γ (see Hartshorne [1,
1.6.11]) completes the proof.
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Proposition [ATAEC III.5.6]

Let π : E → C be an elliptic surface over k,

let Γ/k be a non-singular
projective curve, and suppose that there exists a dominant rational
map φ : Γ× C → E such that the following diagram commutes:

Γ× C E

C

φ

proj2
π

Then E splits.
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Mordell-Weil theorem for function fields

Let E −→ C be an elliptic surface defined over a field k and let E/K
be the corresponding elliptic curve over the function field K = k(C).
If E −→ C does not split, then E(K) is a finitely generated group.
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