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§I. Varieties

§§I.1. Affine Varieties

Exercise I.1.1. (a) Let Y be the plane curve y = x2. Show that A(Y) is isomorphic to a
polynomial ring in one variable over k.

(b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial
ring in one variable over k.

(c) Let f be any irreducible quadratic polynomial in k[x, y], and let W be the conic defined
by f . Show that A(W) is isomorphic to A(Y) or A(Z). Which one is it when?

Solution. (a) A(Y) = k[x,y]
(y−x2)

∼= k[x, x2] = k[x].

(b) The coordinate ring of Z is

A(Z) =
k[x, y]

(xy− 1)
.

Suppose ϕ : A(Z) −→ k[X] be a ring homomorphism. Since x is a unit in A(Z), ϕ(x) is a
unit in k[X] hence is in k. Then ϕ is not surjective. So it cannot be an isomorphism.

(c) Suppose that f (x, y) is given by an irreducible quadratic polynomial

f (x, y) = ax2 + hxy + by2 + dx + ey + f

Since f is quadratic, degree 2 part is non-zero. Since k is algebraically closed, the degree 2
part can always be factorized as

ax2 + hxy + by2 = (a1x + b1y)(a2x + b2y)

where (a1x + b1y) and (a2x + b2y) are non-zero polynomials. Note that this implies that the
linear part is non-zero (as f is irreducible). We have the following two cases:

Case 1: (a1x + b1y) and (a2x + b2y) are proportional. Then make a change of coordinates

(a1x + b1y) 7−→ X, dx + ey + f 7−→ Y

to obtain an equation of the form Y = aX2 (a 6= 0). Absorb the constant in Y to obtain
the parabola equation Y = X2. Note that the above change of coordinates is invertible i.e.,
(a1x+ b1y) and dx+ ey are non-proportional because if they were proportional then f would
not be irreducible (as k is algebraically closed).

Case 2: (a1x + b1y) and (a2x + b2y) are non-proportional. Then make an invertible change
of coordinates

(a1x + b1y) 7−→ X, (a2x + b2y) 7−→ Y

to obtain equation of the form XY + aX + bY + c which can be written as

XY + aX + bY + c = (X− c1)(Y− c2) + c3
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Note here that since f is irreducible, c3 6= 0. Again make a linear change of coordinates
X− c1 7−→ X, Y− c2 7−→ c3Y to obtain equation of the standard hyperbola XY = 1.

Conclusion: Every conic over an algebraically closed field is either isomorphic to a parabola
or a hyperbola according to whether degree 2 homogeneous part of the equation is respec-
tively a square or non-square in k[x, y].

Exercise I.1.2. Let Y ⊆ A3 be the set

Y = {(t, t2, t3)|t ∈ k}.

Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show
that A(Y) is isomorphic to a polynomial ring in one variable over k.

We say that Y is given by the parametric representation x = t, y = t2, z = t3.

Solution. It is easy to see that Y = V(y− x2, z− x3). The ideal I(Y) = (y− x2, z− x3) is a
prime ideal. Hence Y is an affine variety. The coordinate ring of Y is

A(Y) = k[x, y, z]/(y− x2, z− x3) ∼= k[x, x2, x3] = k[x].

So, by Proposition I.1.7 (which follows from the correspondence between prime ideals in
A(Y) and closed irreducible subsets of Y), dim(Y) = dim(A(Y)) = 1.

Exercise I.1.3. Let Y be the algebraic set in A3 defined by the two polynomials x2 − yz and
xz − x. Show that Y is a union of three irreducible components. Describe them and find
their prime ideals.

Solution. Y is the locus of the solutions to the polynomial equations

xz− x = x(z− 1) = 0 =⇒ x = 0 or z = 1 and x2 − yz = 0

When x = 0, then the second equation becomes yz = 0 =⇒ y = 0 or z = 0. When z = 1,
then the second equation becomes x2 − y = 0. So, Y is a union of three components

x = 0, y = 0 x = 0, z = 0 z = 1, x2 − y = 0

The corresponding prime ideals are p1 = (x, y), p2 = (x, z), and p3 = (z− 1, y− x2).

Exercise I.1.4. If we identify A2 with A1 ×A1 in the natural way, show that the Zariski
topology on A2 is not the product topology of the Zariski topologies on the two copies of
A1.

Solution. Consider A1 ×A1 with the product topology. So the closed subsets of A1 ×A1

are a finite union of subsets the form U ×V where U, V ⊂ A1 are closed. Now consider A2

with the Zariski topology. Then the set

V(xy− 1)
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is closed in A2. But this is not closed in A1×A1: the only closed subsets of A1 are the finite
set of points and the whole space A1. So the closed subsets of A1 ×A1 are a finite union of
sets of the form

(a) finite subset of points

(b) finite union of vertical and horizontal lines

(c) the whole space

But V(xy− 1) cannot be written as finite union of sets of this forms.

Exercise I.1.5. Any nonempty open subset of an irreducible topological space is dense and
irreducible. If Y is a subset of a topological space X, which is irreducible in its induced
topology, then the closure Y is also irreducible.

Solution. Suppose X is an irreducible topological space and U ⊂ X is a non-empty open
subset. Suppose that U is not dense. So we can find another non-empty open subset V
such that U ∩ V = ∅. Then Uc ∪ Vc = X where Uc and Vc are proper closed subsets of X.
Contradiction! So U is dense in X.

Suppose that U = V1 ∪ V2 where V1 and V2 closed subsets of U. It is easy to see that this
implies U = V1 ∪ V2 where V1 and V2 denotes their closure in X. But U = X by above so
irreducibility of X implies that either V1 = X or V2 = X. But then either

V1 = V1 ∩U = U or V2 = V2 ∩U = U

(we are using that if V is closed in U then V ∩U = V). So U is irreducible.

Exercise I.1.6. Let Y be an affine variety of dimension r in An. Let H be a hypersurface in
An, and assume that Y 6⊆ H. Then every irreducible component of Y ∩ H has dimension
r− 1. (See (7.1) for a generalization.)

Solution. Let A = k[x1, . . . , xn] and A(Y) = A/I(Y) be the affine coordinate ring of Y. Then
by propsition I.1.7, dim Y = r. By proposition I.1.13, I(H) = ( f ) in A where f is a non-
constant irreducible polynomial. The irreducible components of Y ∩ H corresponds to min-
imal primes belonging to ( f ) in A(Y) where f is the image of f in A(Y). Note that because
Y 6⊆ H, f 6∈ I(Y). So f is a non-zero divisor in A(Y). By Krull’s principal ideal theorem,
every minimal prime belonging to ( f ) has height 1. Let p be such a prime and Z be the
corresponding irreducible component of Y ∩ H. Then by theorem I.1.8(b),

dim B/p = dim B− height p
= 1

Now A(Z) = B/p and again applying proposition I.1.7, we get that

dim Z = dim A(Z) = dim B/p = r− 1.

Hence every irreducible component of Y ∩ H has dimension r− 1.
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§§I.2. Projective Varieties

§§I.3. Morphisms

Exercise I.3.1. A morphism whose underlying map on the topological spaces is a homeo-
morphism need not be an isomorphism.

(a) For example, let
ϕ : A1 −→ A2, t 7→ (t2, t3)

Show that ϕ defines a bijective bicontinuous morphism of A1 onto the curve y2 = x3,
but that ϕ is not an isomorphism.

(b) For another example, let the characteristic of the base field k be p > 0, and define a
map ϕ : A1 −→ A1 by t 7→ tp. Show that ϕ is bijective and bicontinuous but not an
isomorphism. This is called the Frobenius morphism.

Solution. (a) Injectivity: Suppose ϕ(t1) = ϕ(t2) then t2
1 = t2

2 and t3
1 = t3

2. Suppose that
t1 = 0 then t2 = 0 = t1. Similarly, when t2 = 0 then t1 = 0 = t2. So can assume that t1 6= 0,
t2 6= 0. Taking ratios, we get that t1 = t2.

Surjectivity: Suppose we are given a point (x, y) on the curve. Since k is algebraically closed,
we can find a t ∈ k such that t2 = x. Putting this in the equation, we get that y2 = t6. If
necessary, replacing t with −t, we get that y = t3. So (x, y) ∈ im(ϕ).

Since ϕ is defined by polynomials, it is continuous. More precisely, if V is a closed set in A2

defined by polynomials
f1(x, y), . . . , fr(x, y)

then ϕ−1(V) is a closed set in A1 defined by polynomials f1(t2, t3), . . . , fr(t2, t3).

Also note that it is a closed map because ϕ(A1) is the closed subset V(y2− x3) and ϕ( f inite sets) =
f inite sets which are closed in A2 (finite sets are the only proper closed subsets of A1). So ϕ
is a bijective continous closed map, hence a homeomorphism. However, the inverse function
ψ : V(y2 − x3) −→ A1 is given by

(x, y) 7−→
{

0 if (x, y) = (0, 0)
y/x otherwise

To check that ψ is a morphism, we must verify that for every regular function f on U ⊂ A1

open, f ◦ ψ is regular on ψ−1(U). Let’s take f = id on U = A1 then f ◦ ψ = ψ on V(y2− x3).
It is easy to see that around (0, 0), ψ cannot be given by a ratio of two polynomials. So f ◦ ψ
is not regular and hence ψ is not a morphism (of varieties). And ϕ is not an isomorphism.

(b) Here A1 = k. So the map ϕ is just

ϕ : k −→ k, t 7−→ tp

which is the regular pth-power Frobenius homomorphism of k. Suppose that xp = yp then
xp − yp = (x− y)p = 0 implying x = y (Alternatively, since ϕ is a field homomorphism it is
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injective). Since k is algebraically closed, ϕ is surjective. Also the only closed sets of A1 are
finite sets and A1 itself. Since

ϕ−1(A1) = A1 and ϕ−1( f inite set) = f inite set,

ϕ is continuous. Again since

ϕ(A1) = A1 and ϕ( f inite sets) = f inite sets

ϕ−1 is continuous. So ϕ is a homeomorphism. Also ϕ induces a map of coordinate rings

k[x] 7−→ k[x], f (x) 7−→ f (xp)

which is clearly not surjective (for example, x 6∈ image). So ϕ cannot be an isomorphism.

Exercise I.3.2. (a) Let ϕ : X −→ Y be a morphism. Then for each P ∈ X, ϕ induces a
homomorphism of local rings

ϕ∗P : Oϕ(P),Y −→ OP,X.

(b) Show that a morphism ϕ is an isomorphism ⇐⇒ ϕ is a homeomorphism, and the
induced map ϕ∗P on local rings is an isomorphism, for all P ∈ X.

(c) Show that if ϕ(X) is dense in Y, then the map ϕ∗P is injective for all P ∈ X.

Solution. (a) Let 〈U, f 〉 be a representation of an element of Oϕ(P),Y i.e., U is a neighbour-
hood of ϕ(P) and f : U −→ A1 is a regular function. Then ϕ∗P([〈U, f 〉]) is defined to be the
equivalence class of 〈ϕ−1(U), f ◦ ϕ〉 in the local ring OP,X. This is a homomorphism of local
rings because

ϕ∗P([〈U, f 〉][〈V, g〉]) = ϕ∗P([〈U, f 〉〈V, g〉])
= ϕ∗P([〈U ∩V, f g〉])
= [〈ϕ−1(U ∩V), ( f g) ◦ ϕ〉]
= [〈ϕ−1(U) ∩ ϕ−1(V), ( f ◦ ϕ)(g ◦ ϕ)〉]
= [〈ϕ−1(U), f ◦ ϕ〉][〈ϕ−1(V), g ◦ ϕ〉]
= ϕ∗P([〈U, f 〉])ϕ∗P([〈V, g〉])

(b) ( =⇒ ) Suppose that ϕ is an isomorphism with the inverse map ψ. Then ϕ is a homeo-
morphism. Also, it is clear from the definition of ϕ∗P that it is functorial in nature: Suppose

X
µ−→ Y λ−→ Z are morphisms of varieties then for any [〈U, f 〉] in Oλ(µ(P)),Z, we have

(λ ◦ µ)∗P([〈U, f 〉]) = [〈µ−1(λ−1(U), f ◦ (λ ◦ µ)〉]
= [〈µ−1(λ−1(U)), ( f ◦ λ) ◦ µ〉]
= µ∗P([〈λ−1(U), f ◦ λ〉])
= µ∗P(λ

∗
µ(P)([〈U, f 〉]))

= (µ∗P ◦ λ∗µ(P))([〈U, f 〉])
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So (λ ◦ µ)∗P = µ∗P ◦ λ∗
µ(P). Applying this to our case, we get that ϕ∗P ◦ ψ∗

ϕ(P) = (ψ ◦ ϕ)∗P = id∗P.
So ϕ∗P is an isomorphism. This is true for any P ∈ X.

( ⇐= ) Suppose that ϕ is a homeomorphism with the inverse map ψ and the induced map
ϕ∗P on local rings is an isomorphism, for all P ∈ X. Because of the functorial nature of ϕ∗P,
the inverse map (ϕ∗P)

−1 must be given by ψ∗
ϕ(P).

Now we check that ϕ is a morphism. Given any f : U −→ A1 a regular map on an open
subset U ⊂ Y, we check that f ◦ ϕ : ϕ−1(U) −→ A1 is a regular map on ϕ−1(U) ⊂ X. Let
P ∈ ϕ−1(U). Then

ϕ∗P([〈U, f 〉]) = [〈ϕ−1(U), f ◦ ϕ〉] ∈ OP,X

So f ◦ ϕ is regular at P. This happens for each P ∈ ϕ−1(U). So f ◦ ϕ is regular. This happens
for each regular function f on any open set U. So ϕ is a morphism.

Similarly, ψ can be checked to be a morphism using maps ψ∗
ϕ(P). So ϕ is an isomorphism.

(c) Suppose that [〈U, f 〉] and [〈V, g〉] be two elements of Oϕ(P),Y such that

ϕ∗P([〈U, f 〉]) = ϕ∗P([〈V, g〉]) i.e., [〈ϕ−1(U), f ◦ ϕ〉] = [〈ϕ−1(V), g ◦ ϕ〉]

This means that

f ◦ ϕ = g ◦ ϕ on ϕ−1(U) ∩ ϕ−1(V) = ϕ−1(U ∩V).

Since U ∩ V is open in X and ϕ(X) is dense in Y, we have that U ∩ V ∩ ϕ(X) 6= ∅. So
ϕ−1(U ∩ V) is a non-empty open set. This means that f = g on ϕ(ϕ−1(U ∩ V)) which is a
non-empty set containing ϕ(P). Now we claim that ϕ(ϕ−1(U ∩V)) is dense in U ∩V.

Suppose not. Then there is an open set W ⊂ U ∩ V such that ϕ(ϕ−1(U ∩ V)) ∩W = ∅.
Since ϕ(ϕ−1(U ∩V)) ⊂ U ∩V, we have that W ∩ ϕ(X) = ∅. As W ⊂ X is also open, this is
contradiction to densness of ϕ(X). So ϕ(ϕ−1(U ∩V)) is indeed dense in U ∩V. Since the set
where f = g is a dense subset of U ∩ V, we get that f = g on U ∩ V. So [〈U, f 〉] = [〈V, g〉]
and ϕ∗P is injective. This happens for all P ∈ X.

Exercise I.3.3. There are quasi-affine varieties which are not affine. For example, show that
X = A2 − {(0, 0)} is not affine. [Hint: Show that O(X) ∼= k[x, y] and use (3.5). See (III, Ex.
4.3) for another proof.]

Solution. A2 − (0, 0) = U1 ∪U2 where U1 = A2 − {x = 0} and U2 = A2 − {y = 0} are
open sets. Suppose f is a regular function on A2 − (0, 0). Then f |U1 and f |U2 are regular
functions on their respective domains. But U1 and U2 are affine varieties in A3 with ideals
(xz− 1) ⊂ k[x, y, z] and (yz− 1) ⊂ k[x, y, z]. So their coordinate rings are

A(U1) = k[x, y, z]/(xz− 1) = k[x, 1/x, y] and
A(U2) = k[x, y, z]/(yz− 1) = k[x, y, 1/y].

By theorem I.3.2, f |U1 ∈ A(U1) and f |U2 ∈ A(U2). So

f |U1 = g1(x, y)/xn and f |U2 = g2(x, y)/ym



§ 7

where g1, g2 ∈ k[x, y]. Now, let P be any point in A2 − {(0, 0)}. Since f is regular at P, there
is a neighbourhood U of P such that

f |U = g(x, y)/h(x, y)

where g, h ∈ k[x, y] and h does not vanish at any point of U. Shrinking U, if necessary, we
can assume that U is contained both in U1 as well as U2. Then

f |U = g(x, y)/h(x, y) = g1(x, y)/xn = g2(x, y)/ym

WLOG, can assume that all these ratios are in lowest terms. The above equation gives
g1(x, y)ym = xng2(x, y). If m 6= 0 then we have a contradiction as y - g(x, y) and y - x.
So m = 0. Similarly n = 0 and g1(x, y) = g2(x, y). So f |U1 = f |U2 = g1(x, y). Since
U1 ∪U2 = X, we have that f = g1(x, y) ∈ k[x, y]. Conversely, any element of k[x, y] gives a
regular function on X. So O(X) = k[x, y].

Suppose that X is affine. Then by theorem I.3.2(a), A(X) = O(X) = k[x, y]. We have the
inclusion X ↪−→ A2 which gives us a map of coordinate rings

A(A2) = k[x, y] −→ A(X) = k[x, y], f (x, y) 7−→ f (x, y)|X

This is actually an isomorphism of k-algebras. So by corollary I.3.7, X ↪−→ A2 is an isomor-
phism of varieties. Contradiction! So X is not affine.

Exercise I.3.4. Let X ⊆ An and Y ⊆ Am be affine varieties.

(a) Show that X×Y ⊆ An+m with its induced topology is irreducible.

The affine variety X × Y is called the product of X and Y. Note that its topology is in
general not equal to the product topology (Ex. 1.4).

(b) Show that A(X×Y) ∼= A(X)⊗k A(Y).

(c) Show that X×Y is a product in the category of varieties, i.e., show

(i) the projections p1 : X×Y −→ X and p2 : X×Y −→ Y are morphisms, and

(ii) given a variety Z, and the morphisms Z −→ X, Z −→ Y, there is a unique
morphism Z −→ X×Y making a commutative diagram

Z

X×Y

X Y

∃!

(d) Show that dim X×Y = dim X + dim Y.

Solution. (a) Suppose that X×Y is a union of two closed subsets Z1 ∪ Z2. Let

Xi = {x ∈ X|x×Y ⊆ Zi}, i = 1, 2.
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First we show that X = X1 ∪ X2: Let x ∈ X be any point. As Y is irreducible, x×Y which is
isomorphic to Y is also irreducible. Let Wi = (x×Y)∩Zi for i = 1, 2. Then W1∪W2 = x×Y.
So by irreducibility, either W1 = x×Y or W2 = x×Y. This means either x ∈ X1 or x ∈ X2.

Now we prove that X1, X2 are closed in X. Then the irreducibility of will imply that either
X = X1 or X2. So X×Y = Z1 or Z2 and hence X×Y is irreducible. Fix y ∈ Y. Then the map

ϕ : X −→ Y, x 7−→ (x, y)

is a continuous map (since it is defined by polynomials). Now Xi = ϕ−1(Zi). Since Zi’s are
closed Xi’s are closed in X as well.

Now we prove that X × Y is an algebraic set. Combining with above irreducibility result
will give that X × Y is an affine variety. Let the coordinates of An, Am, and Am+n be given
by x1, . . . , xn and y1, . . . , ym and x1, . . . , xn, y1, . . . , ym respectively. Let

f1(x1, . . . , xn), . . . , fr(x1, . . . , xn)

generates the ideal I(X) in k[x1, . . . , xn] and

g1(y1, . . . , ym), . . . , gs(y1, . . . , ym)

generates the ideal I(Y) in k[y1, . . . , ym] then it is easy to see that

f1(x1, . . . , xn), . . . , fr(x1, . . . , xn), g1(y1, . . . , ym), . . . , gs(y1, . . . , ym)

generates the ideal of X×Y in k[x1, . . . , xn, y1, . . . , ym].

(b) We will use the result of part (c) in this. It says that X×Y is a product in the category of
affine varieties. Let Z be an affine variety. Then Theorem I.3.5 says that giving morphisms
Z −→ X, Z −→ Y is equivalent to giving k-algebra homomorphisms A(X) −→ A(Z) and
A(Y) −→ A(Z). Universal property of X×Y gives us the following commutative diagram

k A(Y)

A(X) A(X×Y)

A(Z)

∃!

Now tensor product is a coproduct in the category of k-algebras. So we should immediately
say that A(X×Y) = A(X)⊗k A(Y). But we must be careful here as we are only working in
the full subcategory of reduced finitely generated k-algebras as the following exercise (I.1.5)
tells us

Exercise I.3.5. Show that a k-algebra B is isomorphic to the affine coordinate ring of some
algebraic set in An, for some n, ⇐⇒ B is a finitely generated k-algebra with no nilpotent
elements.
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Solution. ( =⇒ ) Suppose that B = k[x1, . . . , xn]/I(Y) where Y is an affine algebraic set.
Then it is easy to see that I(Y) is a radical ideal of k[x1, . . . , xn] (also follows from corollary
I.1.4). Therefore B has no nilpotent elements. It is easy to see that B is finitely generated
k-algebra.

( ⇐= ) Suppose that B is a finitely generated k-algebra with no nilpotent elements. Then
B = k[x1, . . . , xn]/I where I is a radical ideal of k[x1, . . . , xn]. Then by proposition I.1.2(d),
I(Y) = I where Y = Z(I). So A(Y) = B.

To say that A(X × Y) = A(X)⊗k A(Y), we must prove that tensor product is still the co-
product in this smaller category. It is clear that tensor product of two finitely generated
k-algebras is again finitely generated. It is also true that tensor product of two reduced
k-algebras is again reduced. So tensor product is still the coproduct in this smaller category.

(c) Given a regular function f : U −→ A1 on an open subset U ⊂ Y, we have

f ◦ p1 : U ×Y −→ A1, (x, y) 7−→ f (x)

which is clearly regular at every point of U × Y. So p1 is a morphism. Similarly, p2 is a
morphism.

Given morphisms ϕ : Z −→ X, ψ : Z −→ Y, we get a unique morphism Z −→ X× Y given
by z 7−→ (ϕ(z), ψ(z)) which makes the given diagram commutative.

(d) By proposition I.1.7,

dim X×Y = dim A(X×Y)
= dim A(X)⊗ A(Y) (by (b))
= trans. deg K(A(X)⊗ A(Y)) (by theorem 1.8(a))
= trans. deg K(A(X)) + trans. deg K(A(Y)) (*)
= dim A(X) + dim A(Y)
= dim X + dim Y

where equality in (∗) is as follows: Let

A(X) = k[x1, . . . , xn] = k[X1, . . . , Xn]/I(X) where xi = Xi mod I(X)

A(Y) = k[y1, . . . , ym] = k[Y1, . . . , Ym]/I(Y) where yi = Yi mod I(Y)

be coordinate rings then A(X)⊗ A(Y) ∼= k[x1, . . . , xn, y1, . . . , ym] and

K(A(X)⊗ A(Y)) = k(x1, . . . , xn, y1, . . . , ym) = k(x1, . . . , xn)(y1, . . . , ym).

So the transcendence degrees add up.

Exercise I.3.6. Let ϕ : An → An be a morphism of An to An given by n polynomials
f1, . . . , fn of n variables x1, . . . , xn. Let J = det |∂ fi/∂xj| be the Jacobian polynomial of ϕ.

If ϕ is an isomorphism (in which case we call ϕ an automorphism of An ) show that J is a
nonzero constant polynomial.
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Solution. Let ψ be the inverse morphism of ϕ. We have canonical ith-component projection
morphism ρi : An −→ A1. Then ρi ◦ ψ : An −→ A1 is a morphism which is same as a
global regular function. Since An is affine, by theorem I.3.2(a), ρi ◦ψ must be a polynomial in
k[x1, . . . , xn], say gi. Then ψ is given by polynomials g1, . . . , gn in k[x1, . . . , xn]. Now ϕ ◦ ψ =
idAn . This means that

f1(g1, . . . , gn) = x1, . . . , fn(g1, . . . , gn) = xn

This means that (by chain rule)

δij =
n

∑
k=1

∂ fi(g1, . . . , gn)

∂gk
· ∂gk

∂xj
(x1, . . . , xn)

=
n

∑
k=1

∂ fi(x1, . . . , xn)

∂xk
(g1, . . . , gn) ·

∂gk
∂xj

(x1, . . . , xn)

where δij is the dirac delta function. Now let

J1(x1, . . . , xn) =

(
∂ fi

∂xj
(x1, . . . , xn)

)
ij

and J2(x1, . . . , xn) =

(
∂gi

∂xj
(x1, . . . , xn)

)
ij

be the respective Jacobian matrices of ϕ and ψ. Then the above equations says that

J1(g1, . . . , gn)J2(x1, . . . , xn) = idn×n

Similarly, using that ψ ◦ ϕ = idAn , we will get that

J2( f1, . . . , fn)J1(x1, . . . , xn) = idn×n

This means that J1(x1, . . . , xn) is an invertible matrix (using that a square matrix with left
inverse is invertible). Hence J(x1, . . . , xn) = det |∂ fi/∂xj| is invertible in k[x1, . . . , xn]. i.e.
belongs to k∗.

Exercise I.3.7. Let Y be a variety of dimension > 2, and let P ∈ Y be a normal point. Let f
be a regular function on Y− P.

(a) Show that f extends to a regular function on Y.

(b) Show this would be false for dim Y = 1.

See (III, Ex. 3.5) for generalization.

Solution. (a) Let dim Y = r and X = Y − {P}, an open subset of Y. Since every variety is
covered by quasi-affine varieties, WLOG we can assume that Y is quasi-affine. So Y = U ∩ Z
where Z is an affine variety of dimension r and U is an open subset of An where Z ⊂ Z. Then
the point P ∈ Y corresponds to a maximal ideal mP of A(Z). And OY,P = A(Z)mP which
is an integrally closed domain. Now we will use the following result from commutative
algebra:
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Lemma I.3.1. Let A be a commutative, Noetherian ring which is integrally closed. Then

A =
⋂
p

Ap

where p varies over all height 1 prime ideals and intersection is taking place inside K(A).

Let p be a height 1 prime ideal inOY,P. Then it will correspond to a height 1 prime ideal, also
denoted by p, of A(Z) contained in mP. So Z(p) will define a codimension 1 affine variety
in Z containing the point P. In particular, Z(p) ∩ Y 6= ∅. Now because dim Z = r ≥ 2,
dimZ(p) ≥ 1 and therefore dim Y ∩ Z(p) ≥ 1 (as Y ∩ Z(p) is an non-empty open subset of
Z(p) and is therefore dense in it. Also use proposition I.1.10 that dim Y = dim Ȳ), so Z(p)
will have non-empty intersection with X = Y− {P}. Now consider

f |X∩Z(p)

which is a regular function on X ∩ Z(p). Around any point Q ∈ X ∩ Z(p), we can find an
open subset V ⊂ X ∩ Z(p) such that

f |X∩Z(p) = g/h whereg, h ∈ A(Z)

Claim: h 6∈ p. Because if it did then h(Q′) = 0 for all Q′ ∈ V as V ⊂ Z(p). Contradiction!

But then this means that
f |X∩Z(p) ∈ A(Z)p

This happens for each height 1 prime p of A(Z). Now by above lemma

OY,P = A(Z)mP =
⋂

p⊂A(Z)mP ,height p=1

(A(Z)mP)p =
⋂

p⊂mP in A(Z),height p=1

A(Z)p

This means that f is regular at P! Hence f is regular on whole of Y.

(b) When dim Y = 1 then take Y = A1 and f (x) = 1/x which is defined on A1− {0}. Then
f cannot be extended to the whole of A1 because if it did then in the neighbourhood U of
0, it is given by ratio of two polynomials f (x)/g(x) where g(0) 6= 0. This must also match
with 1/x on U − {0}. This means x f (x) = g(x) implying g(0) = 0. Contradiction!

§§I.4. Rational maps

Exercise I.4.1. If f and g are regular functions on open subsets U and V of a variety X, and
if f = g on U ∩ V, show that the function which is f on U and g on V is a regular function
on U ∪V.

Conclude that if f is a rational function on X, then there is a largest open subset U of X on
which f is represented by a regular function. We say that f is defined at the points of U.
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Solution. We define a map

F : U ∪V −→ A1, F(P) =

{
f (P) if P ∈ U
g(P) if P ∈ V

Then F is a well-defined function since f = g on U ∩V. This is a regular function because in
neighbourhood of any point P ∈ U ∪ V, we can find a neighbourhood where f is given by
ratio of two polynomials. The second statement is clear from the first.

§§I.5. Non-singular curves

Exercise I.5.1. Locate the singular points and sketch the following curves in A2 (assume
char k 6= 2). Which is which in Figure 4?

(a) x2 = x4 + y4;

(b) xy = x6 + y6;

(c) x3 = y2 + x4 + y4;

(d) x2y + xy2 = x4 + y4.

Solution. (a) Let f (x, y) = x2 − x4 − y4. Then

∂ f
∂x

(x, y) = 2x− 4x3 and
∂ f
∂x

(x, y) = −4y3

Now
∂ f
∂x

(x, y) = 0 =⇒ x = 0, 1/
√

2,−1/
√

2

And
∂ f
∂y

(x, y) = 0 =⇒ y = 0

Now putting f (x, 0) = x2 − x4 = 0 gives x = 0, 1,−1. So (0, 0) is the only singular point of
this curve. Now, from the equation, we see that this curve is symmetric about both x and y
axes. So it must have tacnode. Another way to see this is that to find tangent lines at (0, 0),
we factorize the lowest order homogeneous term which here is x2 = x · x. So at (0, 0), it has
two tangent line, both of which are the same x = 0 i.e., y-axis. So it has tacnode.
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(b) Let f (x, y) = xy− x6 − y6. Then

∂ f
∂x

(x, y) = y− 6x5 and
∂ f
∂y

(x, y) = x− 6y5

Equating ∂ f
∂x (x, y) = ∂ f

∂y (x, y) = 0, we get that

y = 66y25 =⇒ y = 0, ζ i
2461/4 i = 0, 1, . . . , 23

where ζ24 is a primitive 24th root-of-unity in k (which exists since k is algebraically closed).
Putting these values in the second equation, we get that

x = 0, ζ i
2469/4 i = 0, 1, . . . , 23

So (x, y) where x and y are one of those above values is a singular point if it lies on the curve.
A quick check gives us that only (0, 0) lies on the curve. So (0, 0) is the only singular point.
To find tangent lines at (0, 0), we factorize the lowest order homogeneous term which here
is xy = x · y. So at (0, 0), it has two tangent lines x = 0 and y = 0 i.e., x-axis and y-axis. So it
has node.

(c) Let f (x, y) = x3 − y2 − x4 − y4 then

∂ f
∂x

(x, y) = 3x2 − 4x3 and
∂ f
∂y

(x, y) = −2y− 4y3

Equating ∂ f
∂x (x, y) = ∂ f

∂y (x, y) = 0, we get that

x = 0, 3/4 and y = 0, 1/
√
−2,−1/

√
−2

So (x, y) where x and y are one of those above values is a singular point if it lies on the curve.
A quick check gives us that only (0, 0) lies on the curve. So (0, 0) is the only singular point.
To find tangent lines at (0, 0), we factorize the lowest order homogeneous term which here
is y2 = y · y. So at (0, 0), it has two tangent line, both of which are the same y = 0 i.e., the
x-axis. So it has node.

(d) Let f (x, y) = x2y + xy2 − x4 − y4 then

∂ f
∂x

(x, y) = 2xy + y2 − 4x3 and
∂ f
∂y

(x, y) = 2xy + x2 − 4y3

Equating ∂ f
∂x (x, y) = ∂ f

∂y (x, y) = 0, we get that

0 = 2xy + x2 − 4y3 = x2 + y(2x− 4y2)

= x2 + y(2x− 4(4x3 − 2xy)) because of first equation

= x2 + 8xy2 + y(2x− 16x3)

= x(x + 8(4x3 − 2xy) + y(2− 16x2))

= x(x + 32x3 − y(2− 16x− 16x2))
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x = 0 is clearly a solution which gives y = 0 from the equation. Now we seek other so-
lutions. A quick check shows that if 2− 16x − 16x2 = 0. Then x + 32x3 = 0. These two
equations have no common solutions. So 2 − 16x − 16x2 6= 0 and y = (x + 32x3)/(2 −
16x− 16x2). So (0, 0) is the only singular point. To find tangent lines at (0, 0), we factorize
the lowest order homogeneous term which here is x2y + xy2 = x · y · (x + y). So it has three
tangent lines at the origin i.e., it has triple point.

Definition I.5.1. Let Y ⊆ A2 be a curve defined by the equation

f (x, y) = 0.

Let P = (a, b) be a point of A2. Make a linear change of coordinates so that P becomes the
point (0, 0). Then write f as a sum

f = f0 + f1 + . . . + fd,

where fi is a homogeneous polynomial of degree i in x and y. Then we define the multiplic-
ity of P on Y, denoted µP(Y), to be the least r such that fr 6= 0.

The linear factors of f are called the tangent directions at P.

Exercise I.5.2. (a) Show that µP(Y) = 1 ⇐⇒ P is a nonsingular point of Y.

(b) Find the multiplicity of each of the singular points in (Ex. 5.1) above.

Solution. (a) ( =⇒ ) Since (0, 0) lies on the curve, f0 = 0. Let f1 = ax + by. Then µP(Y) = 1
implies that either a 6= 0 or b 6= 0. But this means that

either
∂ f
∂x

(0, 0) = a 6= 0 or
∂ f
∂y

(0, 0) = b 6= 0.

So P = (0, 0) is a non-singular point.

( ⇐= ) We reverse the above arguments. Since P = (0, 0) lies on the curve, f0 = 0. Let
f1 = ax + by. Since (0, 0) is a non-singular point, either ∂ f

∂x (0, 0) = a 6= 0 or ∂ f
∂y (0, 0) = b 6= 0.

So µP(Y) = 1.

(b) In Exercise 5.3, all curves had only one singular point, that too at the origin P = (0, 0). It
is clear from the equations that

(a) x2 = x4 + y4, µP(Y) = 2;

(b) xy = x6 + y6, µP(Y) = 2;

(c) x3 = y2 + x4 + y4, µP(Y) = 2;

(d) x2y + xy2 = x4 + y4, µP(Y) = 3.
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Exercise I.5.3. (Analytically Isomorphic Singularities)

(a) If P ∈ Y and Q ∈ Z are analytically isomorphic plane curve singularities, show that
the multiplicities µP(Y) and µQ(Z) are the same (Ex. 5.3).

(b) Generalize the example in the text (5.6.3) to show that if f = fr + fr+1 + . . . ∈ k[[x, y]],
and if the leading form fr of f factors as fr = gsht, where gs, ht are homogeneous of
degrees s and t respectively, and have no common linear factor, then there are formal
power series

g = gs + gs+1 + . . .
h = ht + ht+1 + . . .

in k[[x, y]] such that f = gh.

(c) Let Y be defined by the equation

f (x, y) = 0 in A2

and let P = (0, 0) be a point of multiplicity r on Y, so that when f is expanded as
a polynomial in x and y, we have f = fr+ higher order terms. We say that P is an
ordinary r-fold point if fr is a product of r distinct linear factors.

Show that any two ordinary double points are analytically isomorphic.

Ditto for ordinary triple points.

But show that there is a one-parameter family of mutually non-isomorphic ordinary
4-fold points.

Solution. (a) Suppose Y and Z are given by

f (x, y) = fr + . . . + fd and g(x, y) = gs + . . . + ge

where fr and gs are the lowest degree homogeneous term of f and g respectively. Now

ÔY,P
∼= kJx, yK/( f (x, y)) and ÔZ,Q

∼= kJx, yK/(g(x, y))

These both are local rings with maximal ideal mP = (x, y)/( f (x, y)) and mQ = (x, y)/(g(x, y)).
Since these two are isomorphic, there is an automorphism ϕ of kJx, yK which maps (x, y) to
itself and the ideal ( f (x, y)) to the ideal (g(x, y)). In particular, ϕ is continuous with re-
spect to the m-adic topology of R = kJx, yK. Since k[x, y] is dense in this m-adic topology,
ϕ is determined by where it sends k[x, y] which is determined by where it sends x and y.
Moreover, if we are given a, b ∈ m, there is a unique continuous k-algebra homomorphism
ψ : R −→ R such that ψ(x) = a and ψ(y) = b. So the only question is what conditions on a
and b guarantee that this ψ is an automorphism.

Claim: ψ is an automorphism ⇐⇒ images of a and b in m/m2 are linearly independent.

Proof. ( =⇒ ) ψ induces a vector space isomorphism of m/m2. Since x and y are linearly
independent in m/m2, so must be a = ψ(x) and b = ψ(y).

( ⇐= ) Suppose images of a and b in m/m2 are linearly independent. This just means that
the linear homogeneous parts of a and b are linearly independent. First we prove that ψ
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is surjective: Let a = a1 + a2 + . . . and b = b1 + b2 + . . . and suppose we are given q =
q0 + q1 + q2 + . . . ∈ R. Let p(x, y) ∈ R be

p(x, y) = p0,0 + p2,0x2 + p1,1xy + p0,2y2 + . . .

Find coefficients pi,j such that ψ(p) = p(a, b) = q. This can be done inductively. For exam-
ple, p0,0 = q0. This proves that ψ is surjective. Now ψ is a surjective endomorphism of a
Noetherian ring. So it must be injective (otherwise we will have an infinite strictly increasing
chain of ideals ker ψ ⊆ ker ψ2 ⊆ . . .).

Back to our original question: ϕ was an automorphism of R = kJx, yK. So it is given by
elements a, b ∈ (x, y) with linearly independent linear terms. Since ψ also takes the ideal
( f (x, y)) to the ideal (g(x, y)), we have that f (a, b) = g(a, b)u where u is a unit in kJx, yK.
This just means that leading degrees r and s of f and g must be the same.

(b)

(c) Suppose f (x, y) = (αx + βy)(α′x + β′y) + h.o.t where αβ′ − α′β 6= 0. Now we have

ÔP,Y
∼= kJx, yK/( f (x, y))

As we did in Example I.5.6.3, we can write f = gh where

g = (αx + βy) + h.o.t. and g = (α′x + β′y) + h.o.t. in kJx, yK

(Note that as αβ′− α′β 6= 0, (αx+ βy) and (α′x+ β′y) generates the maximal ideal of kJx, yK).
Because αβ′ − α′β 6= 0, g and h begin with linearly independent linear terms. Hence there is
an automorphism of kJx, yK sending g to x and h to y. So

ÔP,Y
∼= kJx, yK/(xy)

So all double points are analytically isomorphic.

Now we come to triple points. Suppose

f (x, y) = (αx + βy)(α′x + β′y)(α′′x + β′′y) + h.o.t

where the linear terms are linearly independent. We can write

α′′x + β′′y = a(αx + βy) + b(α′x + β′y)

Again, as we did in Example 1.5.6.3, we can write f = gh(ag + bh) where

g = (αx + βy) + h.o.t and g = (α′x + β′y) + h.o.t in kJx, yK

Again, this will use that as αβ′ − α′β 6= 0, (αx + βy) and (α′x + β′y) generates the maximal
ideal of kJx, yK. Further making linear change of coordinates, can make f = gh(g + h).
Because αβ′ − α′β 6= 0, g and h begin with linearly independent linear terms. Hence there is
an automorphism of kJx, yK sending g to x and h to y. So

ÔP,Y
∼= kJx, yK/(xy(x + y))
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So all triple points are analytically isomorphic.

Now we come to ordinary 4-fold points. Doing the above process again, we will get that

ÔP,Y
∼= kJx, yK/(xy(x + y)(x + ty))

where t 6= 0, 1 is a parameter. So we have a one-parameter family of non-isomorphic ordi-
nary 4-fold points.
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§II. Schemes

Exercise II.0.1. Assume all the schemes below are noetherian.

(a) Closed immersions and open immersions are seperated.

(b) Composition of separated morphisms is separated.

(c) Seperatedness is preserved by base change.

(d) If f : X −→ Y and g : Y −→ Z are two morphisms such that g ◦ f is separated then f
is separated.

(e) Seperatedness is local on the base. i.e., A morphism f : X −→ Y is seperated iff Y is
covered by open subsets Vi such that f−1(Vi) −→ Vi is seperated for each i.

Proof. (a) Cover f : X −→ Y be a closed immersion. Cover Y by affine open subsets Vi.
Then f−1(Vi) is affine scheme equal to Spec B/b, b ⊂ B where Vi = Spec B. Now the result
follows from part (e) (which will be proved independently) and the fact that a morphism of
affine schemes is separated.

Let f : U ↪−→ X be an open immersion. Here we are assuming that U ⊂ X an open sub-
set. We will use valuative criterion of separatedness to prove that f is separated: Given a
commutative diagram

Spec K U

Spec R X

g′

f

g

h1

h2

Because f is an inclusion and f ◦ h1 = g = f ◦ h2, we have that h1 = h2 as map of topological
spaces. Also the maps of sheaves OU −→ (h1)∗(OSpec R) and OU −→ (h2)∗(OSpec R) are the
same because they both equal to the restriction of map of sheaves Z −→ g∗(OSpec R) to the
open subset U.

(b) Suppose we are given two separated morphisms f : X −→ Y and g : Y −→ Z. We want
to show that g ◦ f is separated. We will use valuative criterion of sepataredness for this.
Suppose we are given a diagram (Figure 1).

Spec K X Spec K X

Y Y

Spec R Z Spec R Z

f f

g g
h′

h

f ◦h′
f ◦h

Then composing with f , we obtain a diagram as in Figure 2. Since g is separated, we have



§ 19

that f ◦ h = f ◦ h′. So now we obtain the following commutative diagram:

Spec K X

Y

Spec R Z

f

g
h′

h

f ◦h= f ◦h′

Now since f is separated, h = h′.

(c) Let f : X −→ Y be a seperated morphism and Y′ −→ Y be any morphism. We must
show h and h′ as shown in figure are the same maps.

Spec R

Spec K X′ X X′ X

Spec R Y′ Y Y′ Y

p1◦h∃!

f ′

p1

f f ′

p1

f
h

h′

By the valuative criterion of separatedness, p1 ◦ h = p1 ◦ h′. By the universal property of
fibered products, h = h′.

(d) Again we use the valuative criterion to prove that f is separated. Suppose we are given
a commutative diagram as in figure 1. Then composing g with k : Spec R −→ Y, we obtain
a commutative diagram as in figure 2:

Spec K X Spec K X

Spec R Y Spec R Y

Z Z

f f

k
h′

h

g

k

g◦k

h′
h

g

Since g ◦ f is separated, we have that h = h′.

(e) ( =⇒ ) By part (c), f−1(Vi) −→ Vi is seperated since it is base change by inclusion
Vi ↪−→ X.

( ⇐= ) To check that ∆ : X −→ X ×Y X an closed immersion, it suffices to check it on an
open cover. If g : X ×Y X −→ Y is the natural morphism, then open cover {Vi} of Y gives
us an open cover

g−1(Vi) = f−1(Vi)×Vi f−1(Vi) of X×Y X.
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Now f−1(Vi) −→ Vi separated implies that the morphism f−1(Vi) −→ f−1(Vi)×Vi f−1(Vi)
is a closed immersion. This happens for each i. So ∆ is also a closed immersion.

Exercise II.0.2. (Exercise II.3.13)

(a) A closed immersion is a morphism of finite type.

(b) A composition of two morphisms of finite type is of finite type.

(c) Morphisms of finite type are stable under base extension.

(d) A closed immersion is stable under base change.

Solution. (a) Let f : X −→ Y be a closed immersion. Cover Y by affine opens Vi =Spec
Ai. Then f−1(Vi) =Spec Ai/I for some ideal I ⊆ Ai. Clearly, Ai/I is a finitely generated
Ai-module. In particular, it is a finitely generated Ai-algebra.

(b) Let f : X −→ Y and g : Y −→ Z are two morphisms of finite type. Let h = g ◦ f and
V = Spec C ⊆ Z be an affine open. Since g is of finite type, by Exercise II.3.3, we have that

g−1(V) =
n⋃

i=1

Spec Bi

such that Bi is finitely generated C-algebra. Now again using that f is of finite type,

f−1(Bi) =
mi⋃

j=1

Spec Aij

where Aij is fintely generated Bi-algebra. Hence

h−1(V) =
n⋃

i=1

mi⋃
j=1

Spec Aij

where Aij is finitely generated C-algebra. So h is a finite type morphism.

(c) Let f : X −→ Y be a finite morphism and f ′ : X′ −→ Y′ be a base extension of f

X′ = X×Y Y′ X

Y′ Y

g′

f ′ f

g

Let U = Spec B be an affine open in Y such that g−1(U) 6= ∅ and let V = Spec A′ ⊆ g−1(U).
Since f is of finite type, by exercise II.3.3, we can write f−1(U) = ∪n

i=1 Spec Ai as finite union
where Ai’s are finitely generated B-algebras. Then

f ′−1(V) = V ×Y X

= V ×Spec B f−1(U)

=
n⋃

i=1

Spec(Ai ⊗B A′).
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If {b1, . . . br} is finite generating set of Ai as an B-algebra then {b1 ⊗ 1, . . . br ⊗ 1} is a finite
generating set of (Ai ⊗B A′) as an A′-algebra.

Now cover Y with open affines {Ui}i. Then we can cover g−1(Ui) by open affines Vij =

Spec B′ij. Then f ′−1(Vij) can be covered by finitely many open affines Spec A′ijk where A′ijk’s
are finitely generated B′ij-algebras. Hence the morphism f ′ is of finite type.

(d) This corresponds to the fact that tensor product is right exaxt. Let f : X −→ Y be a
closed immersion and f ′ : X′ −→ Y′ be its base change by a morphism g : Y′ −→ Y. Cover
Y by affine opens {Ui = Spec Ai} and cover g−1(Ui) by open affines {Vij = Spec Cij} where
Cij are Ai-modules. Since f is a closed immersion, f−1(Ui) = Spec Bi where Ai −→ Bi is a
surjective homomorphism. Then

f ′−1(Vij) = Vij ×Y X = Vij ×Ui f−1(Ui) = Spec(Cij ⊗Ai Bi)

Since tensor product is right exaxt, Cij −→ Cij ⊗Ai Bi is surjective. Hence f ′−1(Vij) −→ Vij is
a closed immersion hence f ′ is a closed immersion.

Exercise II.0.3. Assume all the schemes below are noetherian.

(a) Closed immersions are proper.

(b) A composition of proper morphisms is proper.

(c) Proper morphisms are stable under base change.

(d) If f : X −→ Y and g : Y −→ Z are morphisms such that g ◦ f is proper and g is
separated. Then f is proper.

(e) Properness is a local property on the base.

Solution. (a) Let f : X −→ Y be a closed immersion.

(a) By Exercise II.3.13(c), closed immersions are stable under base extension. Closed im-
mersions are ofcourse closed. So f is universally closed.

(b) By Exercise II.3.11(a), f is a finite type morphism.

(c) Also we saw that closed immersions are separated.

So f is proper.

(b) Let f and g are proper morphisms. By Exercise II.3.13(b), g ◦ f is of finite type. So we
can use the valuative criterion of properness to check properness of g ◦ f .

Spec K X Spec K X

Y Y

Spec R Z Spec R Z

f f

g g∃!

∃!
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(c) Let f : X −→ Y be a proper morphism and f ′ : X′ −→ Y′ be its base change to Y′ −→ Y.
By Exercise II.3.13(c), f ′ is of finite type. Since Y′ is noetherian, we can use valuative criterion
to check properness of f ′. The following diagram is self explainatory:

Spec K X′ X Spec K X′ X

Spec R Y′ Y Spec R Y′ Y

f f
∃! ∃!

For the second diagram, we used the universal property of fibered products.

(d) We will use valuative criterion of properness to prove this. Suppose that we are given
a commutative diagram as in figure 1 then using that g ◦ f is proper, we get a commutative
diagram as in figure 2

Spec K X Spec K X

Spec R Y Spec R Y

Z Z

f f

k

g◦k g g◦k

∃! h

g

Now we have the following diagram (figure 3) obtained by composing morphisms

Spec K X Spec K X

Spec R Y Spec R Y

Z Z

l

f ◦l f f

kg◦k

f ◦h

g

∃! h

g

Since g is separated, f ◦ h = k i.e., the lower triangle of figure 4 commutes. By valuative
criterion of properness, f is proper.

(e) Suppose that Y is covered by open subsets {Vi} such that f−1(Vi) −→ Vi is proper for
each i. Since separatedness is a local property on base, f is separated. Clearly, this also
implies that f is of finite type. Suppose we given a morphism g : Y′ −→ Y. Then we obtain
the base extension

X′ = X×Y Y′ X

Y′ Y

g′

f ′ f

g
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Now we have that f−1(Vi)×Y Y′ = f−1(Vi)×Vi g−1(Vi). Also X×Y Y′ is covered by { f−1(Vi)×Y
Y′} and f is just the glueing of restriction morphisms f−1(Vi) ×Y Y′ −→ Y′ which actu-
ally are the morphisms f−1(Vi) ×Vi g−1(Vi) −→ g−1(Vi) which are the base extension of
f−1(Vi) −→ Vi by g−1(Vi) −→ Vi. So they are closed morphisms. Since checking that
whether a morphism is closed or not can be done locally on the base and {g−1(Vi)} cover
Y′, f ′ is a closed morphism. Since f ′ was an arbitrary base extension, f is a universally
closed.

Exercise II.0.4. Finite maps are projective.

Solution. We prove this for map of affine schemes. Suppose ϕ : A −→ B be a map of rings
such that B is a finitely generated module over A. Then for some n ∈N, we have

A B

A[x1, . . . , xn]

ϕ

Suppose X = Spec B, Y = Spec A. Then we get

X An
Y Pn

Y

Y

c

f inite so proper

o

separated

By above part (d), X −→ Pn
Y is proper. In particular, it is closed. Since it is composition of

immersions, it is still an immersion so it is a closed immersion. Therefore f is projective.
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