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§1. Introduction

Let G be a locally compact and Hausdorff abelian group. Examples of such groups are finite
groups (with discrete topology), S1 := R/Z (the circle group which can also be thought of
as subgroup of C∗), R, Qp, any finite-dimensional vector space over R or Qp, etc.

Definition 1.1. A character of G is a continuous homomorphism χ : G −→ S1.

Let Ĝ denote the set of characters of G. It is an abelian group under pointwise multiplication.

Example 1.1. Let G = R. Then for any x ∈ R, the function

R −→ S1, y 7−→ e2πixy

is a character of R. Infact, these are all the characters of R (see [Con19], chapter VII, theo-
rem 9.11). The main idea is to observe that any χ ∈ R̂ should be differentiable. Then use
multiplicativity of χ to set up a differential equation solving which gets us the result. So
R̂ ∼= R.

Let G = R/Z then for any m ∈ Z, the function y 7−→ e2πimy is a character of G. Infact, these
are all the characters of G (This follows from the above result). So Ĝ ∼= Z.

For G = Q (or Qp), see the brilliant article of Keith Conrad [Keib]. It turns out that Q̂ ∼=
AQ/Q, the group of rational adèles modulo the rational numbers (which are embedded
naturally into the adèle ring via the diagonal map). Similar to R, all characters of Qp are
of the form y 7−→ e2πixy for some x ∈ Qp (Note that if t ∈ Qp then e2πit = e2πia/pN

for
a, N ∈ Z≥0 such that t− a/pN ∈ Zp).

In section 2, we will see that when G is a finite abelian group then G and Ĝ are isomorphic,

but non-canonically, and G and ̂̂G are canonically isomorphic (given by the evaluation map).

When G is infinite we do not get that G and Ĝ are isomorphic (see example 1.1) but it will

still be true that G and ̂̂G are naturally isomorphic. In section 4, first we will topologize Ĝ
and prove that Ĝ itself is locally compact. Then the Pontryagin duality theorem states that:

Theorem 1.2. [Pontryagin duality] The mapping

evG : G −→ ̂̂G, g 7−→ (evG(g) : χ 7−→ χ(g))

is an isomorphism of topological groups. Hence G and Ĝ are mutually dual.

The principal technical tool for establishing this theorem is the Fourier inversion formula
which we will state in 3. The main reference for this note is [RV13], chapter 3.
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§2. Pontryagin duality for finite abelian groups

In this section we see that when G is a finite abelian group then G ∼= ̂̂G naturally. First we
explicitly calculate Ĝ for a finite cyclic group and then use the structure theorem for finite
abelian groups to calculate Ĝ for arbitrary G.

Let G = Z/mZ be finite cyclic (with the discrete topology). Then every homomorphism
χ : G −→ S1 is continuous and is determined by χ(1). But also we have χ(1)m = χ(m1) =
χ(0) = 1. So χ(1) is a mth root of unity. Fix a primitive mth root of unity ζm. Then

Ĝ = {χa : for a ∈ Z/mZ such that χa(1) = ζa
m}

It is easy to see that χaχb = χa+b and that χ1 generates the group Ĝ. So Ĝ ∼= Z/mZ ∼= G.
Also it is easy to see that if a ∈ Z/mZ is non-trivial then χ1(a) 6= 1. So if there is a ∈ Z/mZ

such that χ(a) = 1 for all characters χ then a = 0. This will be the key observation for
proving the Pontraygin duality for finite groups.

Now let G is an arbitrary finite group. Then by the structure theorem of finite abelian groups
it can be (uniquely) broken into product of cyclic groups, say

G ∼=
Z

m1Z
× Z

m2Z
× . . .× Z

mtZ
where m1|m2| . . . |mt

Now for 1 ≤ i ≤ t, let χi be a character on Z/miZ. Then χ = χ1χ2 . . . χt is a character on G
defined as: Any g ∈ G can be written as g = (g1, . . . , gt) then χ(g) = χ1(g1)χ2(g2) . . . χt(gt).
Morover, every character χ on G can be decomposed as above: We have the inclusion
Z/miZ ↪−→ G which gives a character χi on Z/miZ. Now for g = (g1, . . . , gt) in G,

χ(g) = χ((g1, . . . , gt))

= χ((g1, 0, . . . , 0) + (0, g2, 0, . . . , 0) + . . . + (0, . . . , 0, gt))

= χ((g1, 0, . . . , 0))χ((0, g2, 0, . . . , 0)) . . . χ((0, . . . , 0, gt))

= χ1(g1)χ2(g2) . . . χt(gt)

So characters on G are in one-to-one correspondence with product of characters on its cyclic
factors. Also it is easy to see that products χ1χ2 . . . χt are in one-to-one correspondence with
ordered pairs (χ1, χ2, . . . , χt) (two distinct ordered pairs gives two distinct products). So

Ĝ =
Ẑ

m1Z
× Ẑ

m2Z
× . . .× Ẑ

mtZ
∼=

Z

m1Z
× Z

m2Z
× . . .× Z

mtZ
∼= G.

In particular, |G| = |Ĝ| = | ̂̂G|. Now we prove that the evaluation map

evG : G −→ ̂̂G, g 7−→ (evG(g) : χ 7−→ χ(g))

is an isomorphism. It is clearly a group homomorphism. It is sufficient to prove injectivity.
Suppose g ∈ G is such that χ(g) = 1 for all χ ∈ Ĝ. Then writing g = (g1, . . . , gt), we get that
for all i, χi(gi) = 1 for all characters χi on Z/miZ. This means that gi = 0 for all i which
implies g = 0 in G.
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§3. Fourier Transform and the Fourier Inversion Formula

Now let G denotes a locally compact abelian group with bi-invariant Haar measure dx and
character group Ĝ. First we will define a specific class of functions in L∞(G) which will be
helpful in stating the Fourier inversion formula.

Definition 3.1. A Haar measurable function ϕ : G → C in L∞(G) is said to be of positive
type if for any f ∈ Cc(G) the following inequality holds:∫∫

ϕ(s−1t) f (s)ds f (t)dt ≥ 0.

Let V(G) denote the C-span of continuous functions of positive type.

Definition 3.2. Let f ∈ L1(G). Then we define f̂ : Ĝ −→ C, the Fourier transform of f , by

f̂ (χ) =
∫

G
f (y)χ(y)dy

for χ ∈ Ĝ. (This formula makes sense, since for all y ∈ G, |χ(y)| = 1 and therefore | f̂ (χ)| ≤
|| f ||1 < ∞ for all χ ∈ Ĝ. In particular, f̂ ∈ L∞(Ĝ).)

Remark 3.3. When G = R then Ĝ ∼= R (see example 1.1) and we can identify every t ∈ R

with the character s 7−→ eist. In this case the formula above reduces to

f̂ (t) =
∫

R
f (s)e−istds

which is the ordinary Fourier transform of a function defined on R. The point is that despite
appearances, this should in fact be regarded as a function on R̂.

Theorem 3.4. [Fourier Inversion Formula] Let V1(G) = L1(G) ∩V(G). There exists a Haar
measure dχ (called the dual of the measure dx) on Ĝ such that for all f ∈ V1(G),

f (y) =
∫

Ĝ
f̂ (χ)χ(y)dχ.

Proof. The proof is long and uses a lot of functional analysis. See [RV13], section 3.3.

We need to also define Fourier transform of a character measure and see a result about it
which will be used crucially in our proof of the Pontryagin duality. Let G and Ĝ as above
and µ̂ be a Radon measure on Ĝ such that µ̂(Ĝ) is finite.
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Definition 3.5. The Fourier transform of the measure µ̂ is a function Tµ̂ : G −→ C defined as

Tµ̂(y) =
∫

Ĝ
χ(y)dµ̂(χ)

Because µ̂(Ĝ) is finite, one deduces at once that this transform is both continuous and
bounded by µ̂(Ĝ) on G. Now we establish a result which will be useful later.

Proposition 3.6. If for Tµ̂(y) = 0 every y ∈ G, then µ̂ = 0.

Proof. (Outline) For all f ∈ L1(G), f (y)χ(y) is measurable on G× Ĝ and it is easy to check
that the conditions of Fubini’s theorem hold. So∫

f̂ (χ)dµ̂(χ) =
∫

f (y)Tµ̂(y)dy = 0.

But the ring { f̂ : f ∈ L1(G)} ⊂ L∞(Ĝ) is dense in C0(Ĝ) ([RV13], Prop 3.15). Hence∫
g(χ)dµ̂(χ) = 0

for all g ∈ Cc(Ĝ) ⊂ C0(Ĝ). The result then follows at once by the elementary correspondence
between Radon measures and integrals ([Rud70], theorem 2.14).

§4. Pontryagin duality for locally compact abelian groups

First we topologize Ĝ with the subspace topology as a subset of the space C(G, S1) of contin-
uous functions G −→ S1 with the compact-open topology. That means that the basic open
sets around the trivial character 1 in Ĝ are

W(K, V) := {χ ∈ Ĝ : χ(K) ⊂ V}

for compact K in G and V ⊂ S1 open. The compact-open topology on C(G, S1) is Hausdorff,
so the topology on Ĝ is Hausdorff. With the above topology Ĝ is a topological group and it
is a closed subset of C(G, S1) (intuitively, a limit of homomorphisms is a homomorphism).

Notation:

• For g ∈ G, U ⊂ G will be called a neighbourhood of g if g ∈ int(U).

• Let ϕ : R −→ S1, t 7−→ e2πit. For 0 < ε ≤ 1, define N(ε) = ϕ((−ε/3, ε/3)).

• For m ∈ Z≥1 and X ⊂ G, define X(m) := {∏n
j=1 xj : xj ∈ X, j = 1, . . . , n}.

Now we establish a technical lemma which will help us to check the continuity of a character
by a simple criterion which will simplify the proof of local-compactness of Ĝ.
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Lemma 4.1. Let m ∈ Z≥1 and suppose that x ∈ C is such that x, x2, . . . , xm lie in N(1). Then
x ∈ N(1/m). Consequently, if U ⊂ G containing the identity and χ : G −→ S1 is a group
homomorphism (not necessarily cts) such that χ

(
U(m)

)
⊆ N(1), then χ(U) ⊆ N(1/m).

Proof. (Outline) Let r ∈ Z≥1 such that xr ∈ N(1). Then there is 0 ≤ q < r such that
x ∈ N(1/r)ϕ(q/r). It is easy to see that

N
(

1
r

)
∩ N

(
1

r + 1

)
ϕ

(
q

r + 1

)
6= ∅ =⇒ q = 0.

Now use induction to prove the first statement. The second statement follows from it.

Theorem 4.2. 1. A group homomorphism χ : G −→ S1 is continuous ⇐⇒ χ−1(N(1))
is a neighborhood of the identity in G.

2. The family {W(K, N(1))}K (K varies over all the compact subsets of G) is a neighbor-
hood base of 1 for the topology of Ĝ.

3. If G is discrete, then Ĝ is compact.

4. When G is a locally compact abelian group, the group Ĝ is locally compact.

Proof. (1) ( =⇒ ) Clear. ( ⇐= ) Let U ⊂ G open neighbourhood of e such that χ(U) ⊂
N(1). For every m ∈ Z≥1, by continuity of the product operation of G, there exists V open
neighbourhood of e such that V(m) ⊂ U. Then χ(V(m)) ⊂ N(1/m) by the above lemma.

(2) We need to show that for every K1 ⊂ G compact and for every positive m, there exists
K ⊂ G a compact subset such that W(K, N(1)) ⊆ W(K1, N(1/m)). WLOG, we can assume
that e ∈ K1 since K1 ∪ {e} is again compact and W(K1, N(1/m)) = W(K1 ∪ {e}, N(1/m)).

Let K = K(m)
1 , which is compact. It is clear that W(K, N(1)) ⊂W(K1, N(1/m)).

(3) When G is discrete then Ĝ = Hom(G, S1) is the set of all group homomorphisms G −→
S1. Morover, the compact-open topology of C(G, S1) = (S1)G conicides with the product
topology on (S1)G. By Tychonoff’s theorem C(G, S1) is compact and hence Ĝ is compact as
it is closed in C(G, S1).

(4) By (2) it suffices to show that for any K ⊂ G neighbourhood of e, W = W(K, N(1/4)) is a
compact neighbourhood of 1 in Ĝ. Let G0 = G as groups with the discrete topology. Define
W0 = {χ ∈ Ĝ0 : χ(K) ⊂ N(1/4)}. By part (1), W0 ⊂ W and certainly W ⊂ W0. Hence
W = W0 (as sets). Now it is sufficient to prove that the induced topology τ0 on W0 by Ĝ0 is
finer than the induced topology τ on W by Ĝ (since W0 is clearly compact w.r.t τ0).

Let K1 ⊂ G be compact. And consider W ′ = W(K1, N(1)) ∩W. By (2), it is sufficient
to prove that this is open in relative topology τ0 or equivalently there exists an open τ0-
neighbourhood around e contained in W ′. Let V be a neighbourhood of e such that V(2) ⊂ K.
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Since K1 is compact, there exists a finite set such that F ·V ⊃ K1. Let W ′0 = W0(F, N(1/2)) ∩
W. We check that W ′0 ⊂ W ′. If µ ∈ W ′0 then µ ∈ W such that µ(F) ⊂ N(1/2). Now
µ(K1) ⊂ µ(F ·V) ⊂ N(1/2)N(1/2) = N(1). So µ ∈W ′.

In proof of the local compactness of Ĝ, we compared two topologies on it. For a completely
different proof using the Arzela-Ascoli theorem, see [Keia]. Now we begin our proof of
Pontryagin duality. Recall that we have a natural map

evG : G −→ ̂̂G, g 7−→ (evG(g) : χ 7−→ χ(g))

Pontryagin duality states that evG induces an isomorphism of topological groups. It is easy
to check that evG is a homomorphism of groups. So we only need to check bijectivity and
topological properties. First we prove that evG is injective continuous open map. But before
moving onto proof of this, we note that locally compact spaces in general are not normal
(deleted Tychonoff plank is a standard counterexample) but still they satisfy a weaker ver-
sion of the Uryshon’s lemma:

Theorem 4.3. [Uryshon’s lemma] ([Rud70], theorem 2.12) Suppose X is a locally compact
Hausdorff space, V ⊂ X open, and K ⊂ X compact. Then there exists a function f ∈ Cc(X)
such that f |K = 1 and supp( f ) ⊂ U.

Lemma 4.4. The mapping evG defined above is injective: that is, G separates points in Ĝ.

Proof. Suppose that g 6= e. It suffices to show the existence of a character χ such that χ(g) 6=
1. Suppose that no such χ exists. Then by the left-invariance of the Haar measure we have

f̂ =
(

Lg f
)̂

for all f ∈ L1(G).

Hence by the Fourier inversion formula (3.4) we get f = Lg f for all f in V1(G). Now, since G
is Hausdorff, there exists an open neighborhood U of the identity such that U∩ (g−1U) = ∅.
By Uryshon’s lemma, there exists a function f ∈ Cc(G) such that f (e) = 1 and supp( f ) ⊂ U.
Now we see that f ′ = f ∗ f̃ is a continuous function of positive type: For all h ∈ Cc(G)∫∫

( f ∗ f̃ ) (s−1t)h(s)ds h(t)dt =
∫∫
〈Ls−1t f , f 〉 (s−1t)h(s)ds h(t)dt

=
∫∫
〈h(s)Ls f , h(t)Lt f 〉 ds dt ≥ 0

Also supp( f ′) ⊂ U. But for such f ′, it is impossible that f ′ = Lg f ′. Contradiction!

Now let K̂ be a compact neighborhood of 1 and V ⊂ S1 open, we define:

W(K̂, V) = {ψ ∈ ̂̂G : ψ(χ) ∈ V for all χ ∈ K̂} and WG(K̂, V) = W(K̂, V) ∩ evG(G)

By lemma 4.4 we can regard WG(K̂, V) as a subset of G. Now we see the following:
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Proposition 4.5. WG(K̂, V) and its translates constitute a base for the topology of G.

Proof. Let U be an open neighborhood of e. By Uryshon’s lemma there exists a continuous
positive type function g on G of with supp(g) ⊂ U and g(e) = 1. Now ĝ is positive (Fourier
transform of a positive function is again positive). Hence by the inversion formula, we have∫

ĝ(χ)dχ = 1

Thus we may identify ĝ(χ)dχ with a finite Radon measure on Ĝ, which in particular, is inner
regular. So given any ε > 0, there exists a compact subset K̂ of Ĝ such that∫

K̂
ĝ(χ)dχ > 1− ε

and hence the corresponding integral over K̂c is less than ε. Now consider

g(y) =
∫

K̂
ĝ(χ)χ(y)dχ +

∫
K̂c

ĝ(χ)χ(y)dχ

given by the Fourier inversion formula. As V shrinks to a sufficiently small neighborhood
of 1 in S1, the first integral above eventually lies within ε of unity for all y ∈ WG(K̂, V),
while the second is unconditionally bounded in absolute value by ε. Hence g > 1− 2ε on
WG(K̂, V). But supp(g) ⊂ U, and therefore WG(K̂, V) ⊂ U.

Corollary 4.6. The mapping evG is a homeomorphism onto its image.

Proof. By construction we have evG(WG(K, V)) = W(K, V) ∩ evG(G). The above proposi-
tion (4.5) shows that evG is bicontinuous at e. Since evG is clearly a group isomorphism onto
its image, so evG is continuous at every point of G by translation.

Corollary 4.7. The image G a is closed in ̂̂G.

Proof. First we see that a locally compact and dense subset D of a Hausdorff space X must
be open: Since D is locally compact, there is a compact K ⊂ D such that there is an open
set U of X containing p such that U ∩ D ⊂ K. Now since D is dense in X, if the open set
U − K was nonempty it would contain a member of D, which contradicts U ∩ D ⊂ K. So
U ⊂ K ⊂ D and D contains a neighbourhood of p.

Now evG(G) is locally compact subgroup and is dense in evG(G). So evG(G) is open sub-

group hence also closed subgroup of evG(G). So evG(G) is closed in ̂̂G.
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Now we are reduced to showing that evG(G) is dense in ̂̂G. This will require some further
delicate analysis.

Let f ∈ L1(G) ∩ L2(G). As ususal define f̃ (x) := f (x−1) for x ∈ G. An easy calculation

shows that ̂̃f (χ) = f̂ (χ). Now let g = f ∗ f̃ . Then g ∈ L1(G) and is of positive type. Also

easy to see that ĝ = f̂ · ̂̃f . So by Fourier inversion (3.4), we get∫
| f (x)|2dx = g(1) =

∫
ĝ(χ)dχ =

∫
| f̂ (χ)|2dχ

This shows that the Fourier transform induces a map

L1(G) ∩ L2(G) −→ L2(Ĝ), f 7−→ f̂

is an isometry onto its image. Let Â1 denotes the image. The following result is the key to
our current discussion.

Lemma 4.8. Â1 is a dense subspace of the Hilbert space L2(Ĝ).

Proof. Assume that g ∈ L2(Ĝ) is orthogonal to every element in Â1. We will show that
g = 0 in L2(Ĝ). It is easy to see that Â1 is stable under multiplication by elements of α(G):
α̂(y) · f = L̂y f . Hence for all f ∈ Â1 and y ∈ G, we have that∫

g(χ) f (χ)χ(y)dχ = 0.

This says that the Fourier transform of the measure g(χ) f (χ)dχ is zero, and hence g f almost
everywhere (proposition 3.6). But for a character χ we have (̂χ · f ) = Lχ f̂ . Thus given any
nonzero continuous element of Â1, we can produce an element of Â1 that does not vanish
in some neighborhood of χ. Hence if the product g f̄ is zero almost everywhere, it must be
that g is zero almost everywhere which means g is zero in L2(Ĝ).

Also L1(G) ∩ L2(G) is dense in L2(G) (for 1 ≤ p < ∞, Cc(G) is dense in Lp(G), see [Rud70],
theorem 3.14). So the isometry defined above may be extended by continuity to an isometry

L2(G) −→ L2(Ĝ) f 7−→ f̂ .

This extended Fourier transform called the Plancherel transform. Thus we have established:

Theorem 4.9. [Plancherel] Let G be a locally compact abelian group. Then the Plancherel
transform defines an isometric isomorphism of Hilbert spaces from L2(G) onto L2(Ĝ).

This theorem gives us following two easy corollries whose proof we leave to the reader.

Corollary 4.10. [Parseval’s Identity] For all f , g ∈ L2(G), we have∫
f (x)g(x)dx =

∫
f̂ (χ)ĝ(χ)dχ.
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Corollary 4.11. Let f , g ∈ L2(G), and let h ∈ L1(G). Then if h = f · g, we have ĥ = f̂ ∗ ĝ.

Now we come to our main proposition:

Proposition 4.12. Let U be a nonempty open subset of Ĝ. Then there exists a nonzero func-
tion f ∈ L1(G) such that f̂ ∈ L1(Ĝ) is a function with support contained in U.

Proof. Let µ be the Haar measure on Ĝ. By inner regularity, there exists a compact set K1
with µ(K) > 0. Then K ⊂ ∪g∈GsU. By left invariance, we get that µ(U) > 0. Thus, again by
inner regularity, there exists a compact subset K of U with positive measure.

For every x ∈ K we can find an open neighborhood Vx of e and an open neighborhood Ux
of x such that UxVx ⊂ U. By compactness of K there are finitely many points x1, . . . , xn
such that K ⊂ ∪iUxi . Let V = ∩iVxi then KV ⊂ U. Consider the convolution 1K ∗ 1V of
characteristic functions. From Plancherel theorem (4.9), there are functions g1, g2 ∈ L2(G)

such that ĝ1 = 1K and ĝ2 = 1V . Then f = g1 · g2 ∈ L1(G) and by corollary 4.11, f̂ = 1K ∗ 1V .
Moreover, it is easy to see that the integral of f̂ over Ĝ is simply the product of the measures
of µ(K) · µ(V), and hence positive. Thus f̂ is nonzero on a set of positive measure.

Proof. [Pontryagin ’s Theorem] As we observed above, it remains only to show that evG(G)

is dense in ̂̂G. If not, then by last proposition, there exists a function ϕ ∈ L1(Ĝ) such that ϕ̂

is nonzero but ϕ̂ vanishes on evG(G). Let χ̂0 ∈ ̂̂G. Then by definition,

ϕ̂(χ̂0) =
∫

ϕ(χ)χ̂0(χ
−1)dχ.

But the assumption that ϕ̂ vanishes on evG(G) means precisely that∫
ϕ(χ)χ(y−1)dχ = 0

for all y ∈ G. Hence, as in the proof of Plancherel’s theorem, ϕ = 0 almost everywhere (3.6),
and therefore ϕ̂ = 0. Contradiction!
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